
 Class Prediction Based on Gene Expression: Applying Neural
Networks via a Genetic Algorithm Wrapper

Benjamin Good

Veterans Medical Research
Foundation

3350 La Jolla Village Drive
San Diego, CA 92161, USA

ben@schoolid.com

Jeremy Peay

Veterans Medical Research
Foundation

3350 La Jolla Village Drive
San Diego, CA 92161, USA

jpeay@vapop.ucsd.edu

Satish Pillai

Department of Biology
University of California

San Diego,
La Jolla, CA 92093-0679
satish@biomail.ucsd.edu

Jacques Corbeil

Department of Medicine
University of California

San Diego,
La Jolla, CA 92093-0679
and the Veterans Medical

Research Foundation
jcorbeil@ucsd.edu

Abstract

This project focuses on applying neural
networks to the classification of biological
state based on gene expression data. In order
to take advantage of the non-linear
classification abilities of neural networks, a
genetic algorithm is employed as a “wrapper”
feature selector. Results indicate that the
genetic algorithm effectively identifies
features that allow successful neural network
training. In addition, it is shown that
ensembles created by combining neural
networks from multiple runs of the genetic
algorithm consistently outperform single
networks.

1 INTRODUCTION

Due to recent advances in biotechnology, gene
expression can now be quantitatively monitored on a
global scale. Currently, the activity of approximately
12,000 genes can be measured simultaneously. Within
the near future, we will have the ability to monitor all of
the estimated 35,000 genes of the human genome. The
information present in this data will help in elucidating
molecular mechanisms underlying phenotypes in both
normal and disease states. This information will be
useful for diagnosis and prognosis, and it may shed
light on numerous biological processes related to
pathogenesis. In order to take full advantage of this
new source of information, methods for identifying
those genes or groups of genes that are most pertinent
to a given phenomenon must be identified. Standard
statistical methods can identify simple correlations, but
more advanced techniques are required to find complex

relationships between genes associated with different
biological phenomena.

The goal of our project is to produce a classifier for
gene expression studies that not only identifies genes
whose expression is correlated with a class distinction,
but also identifies potentially non-linear interactions
between genes associated with class differences. This
will hopefully produce a reliable classifier that works
using only a small number of genes. Such a
streamlined classifier will be particularly important for
potentially high throughput applications such as
diagnosis and prognosis because reducing the number
of genes that need to be monitored significantly reduces
the cost of the procedure. In addition, identifying a
relatively small subset of genes that exhibit a consistent
pattern of expression associated with a biological
condition will serve as an excellent starting point in
understanding the molecular mechanisms underlying
that condition.

With non-linearity as a pre-condition, two well known
types of classifiers are classification trees and multi-
layer neural networks. Classifier trees are appealing
because of the relative ease of explaining their
behavior, but since they have already been investigated
for use with gene expression data, without any
improvement over linear methods, we chose to focus
the present study on multi-layer neural networks
(Dudoit et al 2000).

With thousands of potential features, extremely few
available samples, and computationally intensive neural
network training, the choice of feature selection method
is a crucial and challenging task. We chose a genetic
algorithm “wrapper” approach because it provides an
efficient search mechanism directly tailored to the
neural networks and capable of rewarding complex
relationships present in the data(Yang and Hanovar

1997). The added number of cycles required by the
wrapper approach as opposed to a “filtering” approach
was judged necessary because most filtering methods
do not take into account potentially useful feature
interactions and may thus perform poorly in
conjunction with a non-linear classifier. Since the
primary reason for using neural networks in this
application is the hope of discovering and exploiting
complex interactions, it is essential to come up with a
feature selection routine that does not eliminate them.

1.1 RELATED WORK

The idea of applying genetic algorithms as feature
selectors is not novel (Chtioui, Bertrand, & Barba
1998),(Yang & Hanovar 1997), (Siedlecki & Sklansky
1989), and (Hallinan & Jackway 1999). Of these, Yang
& Hanovar and Hallinan & Jackway investigate
combinations of genetic algorithms and neural
networks. Our project extends these and other author’s
work by applying the general technique to a
substantially different problem domain. The primary
difference between gene expression data and all of the
datasets used in the above publications is that our data
has roughly 100 times more available features but much
fewer sample cases. Thus the need to identify an
efficient feature search methodology is obvious.

2 METHODS

2.1 DATA

For the experiments described in this paper, each
sample consists of the expression levels of 6,817 genes
as measured by an Affymetrix GeneChip1 and the
appropriate cancer classification. These classifications
are based on current pathological techniques used in
cancer diagnosis that utilize tumor morphology, cell
surface markers, and cytogenetic analysis. These
classification criteria are not absolute and
misclassifications can occur. Furthermore, the criteria
for classification are always being remolded as more is
learned. Values used to represent gene expression
range from 0 to 60,000. It is important to note that
these values are not quantitative between two different
genes, due to the kinetics of DNA hybridization, but are
quantitative between the same gene in different samples
(Naef et al 2001). When the words “inputs” or
“features” are used, they refer to genes. The data from
these features are the expression levels of those genes.

1 http://www.affymetrix.com

2.2 ALGORITHM

The version of our algorithm that is presented here
employs a GA to search for useful combinations of
inputs and network architectures2. Neural networks
trained with back propagation are used to perform the
classification (and fitness evaluation).

The algorithm runs as follows:

1) Initialize a population in which each individual
specifies a random subset of the available
inputs, a random number of inputs to use, and
a random number of hidden units.

2) Evaluate each individual in the population by
producing a network with the specified inputs
and number of hidden units, randomly
initializing the network weights, training the
network with the gene expression values of the
specified inputs, and then running the trained
network on an evaluation set consisting of the
network training set and an additional unseen
test set. The fitness for each individual is
determined by the number of errors that the
trained network makes on the evaluation set.

3) Select and reproduce.
4) Iterate 1-3 until a network is found that

correctly classifies all of the samples in the
evaluation set or a maximum number of
generations is reached.

5) Test the best network on a third separate
validation set.

2.3 ARTIFICIAL GENOME

The genotype employed includes an array of integers
representing a set of inputs to the neural network, the
number of inputs to use, and the number of hidden units
of the neural network. No input may be used for more
than one input to the neural network. This input
diversity is enforced throughout evolution. This integer
feature representation is different from the great
majority of GA feature extraction projects in that other
projects typically use a string with binary values
representing whether or not a given feature is to be used
by the classifier. This approach would of course be
unfeasible in a domain with many thousands of
potential features.

2.4 NEURAL NETWORKS

The networks are all fully connected feedforward with
one hidden layer. The only aspects of network
architecture that vary are the number of hidden units

2 The only aspects of architecture that change are the number of
hidden units and the number of inputs.

and the number of inputs. A maximum number of
hidden units and of inputs is set before the trial begins.
As all of the classifications are made between only two
classes at a time, all of the neural networks have only
one output unit. All the nodes in the networks employ a
sigmoid activation function that yields a floating point
number in the range of 0 to 1. If the output of the
output unit is greater than 0.5, the pattern is classified in
one class, otherwise it is classified in the other.

The networks are trained using back propagation with
momentum (Rumelhart et al 1986)(Plaut et al 1986).
Unless otherwise noted, the networks were trained for 5
steps each evaluation, with a learning rate of 0.9, and a
momentum of 0.8. The weights are updated after each
pattern is presented, so there are 5 * number-of-
training-cases weight adjustments for each individual
evaluation.

These parameter choices were made primarily because
they seemed to provide close to the minimum number
of cycles needed to perform any meaningful learning.
As the complexity of the patterns to be learned
increases, we expect to have to increase the number of
training steps and potentially decrease the learning
rate3. These parameters might also be incorporated into
the GA with an added fitness penalty for excessive
processing time.

2.5 EVALUATION

One aspect of this project that seems to defy
conventional wisdom is the low number of evaluations
for each set of features. Since the performance of the
network is determined by its inputs, architecture and
initial random weights, many authors suggest
evaluating with as many as 30 different random
initializations in order to get a good indication of the
input set’s actual performance (Setiono & Liu 1997).
But, as multiple training iterations add significantly to
the time needed to run the algorithm, the number of
evaluations was initially set to 1. Despite the noisy
fitness evaluation, this method did produce positive
results and increasing the number of evaluations per
input set did not notably alter the number of generations
needed to maximize the fitness function or alter the
characteristics of the resultant networks.

Another difference between this project and previous
work is the inclusion of an evaluation set separate from
the network training set and in addition to the validation
set. This additional division was included with hopes
of providing the GA with pressure to select
network/input sets that provided good generalization.

3 Other alternatives include network growing algorithms (Yang &
Hanovar 1997) and the incorpration of weight training into the GA
(Hallinan & Jackway 1999).

2.6 REPRODUCTION – TOURNAMENT
SELECTION

After each individual has been assigned a fitness based
on its post-training evaluation performance, the
population is reproduced via tournament selection with
replacement. Each individual in the population is
paired with another randomly assigned member of the
population and their fitnesses are compared. The
individual with the lower fitness is judged the loser and
is replaced by a mutated version of the winner. The
winner stays in the population unchanged. Initial runs
did not employ crossover.

2.6.1 Mutation

There are three separate mutation rates, one for number
of inputs, one for number of hidden units, and one for
the inputs themselves. Typical settings might be 0.25,
0.4, and 0.01 respectively. If a random mutation is
indicated for the number of hidden units or for the
number of inputs, the loser inherits the number from the
winner, otherwise the loser maintains their original
number4. The probability of mutation for each of the
inputs is set by the input mutation rate. If an input
mutation is indicated, that input is replaced by another
randomly selected input.

If there are fewer inputs for the loser than the winner,
some of the winner’s inputs are not transferred. If there
are more inputs for the loser than the winner, then some
of the loser’s inputs are retained.

For example:

Individual A inputs(23 900 6645 4 3000)
number of inputs(5) hidden(4)
Fitness(A) = 8

Individual B inputs(2 35 5)
number of inputs(3) hidden(7)
Fitness(B) = 34

Fitness(A) < Fitness(B) therefore B is the winner and A
is to be replaced.

First, assign number of hidden units:
Rand(0,1) might return 0.7 which is greater than

the hidden mutation rate of 0.4 so replace the number of
hidden units of A with B.

hidden(A) = hidden(B) = 7

4 A better term for these two parameters might be “inheritance rate”.

Now, assign number of inputs:
Rand(0,1) might return 0.5 which is greater than

0.1 so leave A with its original number of inputs.

Now, assign inputs
Inputs(B) = (2 35 5)
Inputs(A) = (23 900 6645 4 3000)
Inputs(A)* = (2 35 5 4 3000)

Now mutate inputs
Inputs(A) = (2 6942 5 4 3000)

So, after this round of the tournament:

(original)
A inputs(23 900 6645 4 3000)
number of inputs(5) hidden(4)
B inputs(2 35 5)
number of inputs(3) hidden(7)

(next gen)
A inputs(2 6942 5 4 3000)
number of inputs(5) hidden(7)
B inputs(2 35 5)
number of inputs(3) hidden(7)

This algorithm was chosen because it is very simple to
implement and initial tests proved that it works
reasonably well. As this project moves forward, the
mechanics of the GA will continue to be refined.

2.7 DATASET

The dataset principally discussed in this paper is the
one associated with Golub (1999) and published online
at www.genome.wi.mit.edu/MPR. It consists of 72
samples consisting of the expression levels of 6817
genes. Of the 72 samples, 47 were from patients
diagnosed with Acute Lymphoblastic Leukemia (ALL)
and the remaining 25 were from patients diagnosed
with Acute Myeloid Leukemia (AML). The ALL
samples were again divided between 9 T-cell samples
and 38 B-cell samples.

3 RESULTS

For all of the trials presented here, three sets had to be
constructed. A training set for the neural networks, an
evaluation set for the GA, and a validation set for the
algorithm as a whole.

In runs without a separate validation set, the algorithm
was always able to find a set of inputs and a network
that was able to correctly predict each of the samples in
the evaluation set. For example, training the networks
with 38 samples and evaluating the GA on the

remaining set of 34 always resulted in a network/input
set that could correctly classify all of the sample cases.
However, when an additional validation set was added,
results proved inconsistent. Even when the GA had
maximized its fitness function by correctly classifying
all of the samples in the evaluation set, the performance
of the resultant network/input set was unpredictable.

Since these networks were never trained using the GA
evaluation set and the network weights were re-
initialized between each generation, overfitting through
network training cannot be blamed for the variability in
generalization abilities of the resultant networks. This
result demonstrates that overfitting is an important
problem for feature selection routines, particularly in
domains as feature rich as gene expression.

3.1 VALIDATION

Golub (1999) divides the 72 AML/ALL samples into a
training set of 38 and a test set of 34. Using this
division, a simple class-mean/std filter and a weighted
voting scheme 5, they successfully predicted 29 of the
34 test samples. Lowering their decision criteria would
have resulted in correct prediction of 32 of the 34. For
the next series of runs, we used the same data and test
set division.

Of the 38 samples in the training set, 4 were held out of
network training. The entire set of 38 was used for the
GA evaluation. Each run continued until a
network/input set was discovered that could correctly
classify all of the patterns in the evaluation set or until a
maximum generation was reached. At this point,
training ceased and the best network was evaluated on
the 34 samples of the validation set.

In order to test the effectiveness of the GA, two trials
were conducted. In the first, the GA was implemented
as described above. In the second, the same algorithm
and parameter settings were used except that fitnesses
were randomized before reproduction.

With a population of 100 and the maximum number of
generations set to 50, 500 runs with the GA produced
448 networks that succeeded in classifying 100% of the
GA evaluation set. Of the remaining 42, all missed
only 1 of the eval set. The GA produced an average of
5.5 errors on the validation set (of 34) with a standard
deviation of +- 2.5 errors. (Removing the 42 runs that
did not maximize the fitness function only improves the
avg. validation error to 5.0).

5 This scheme is according to Dudoit et al(2000) diagonal linear
discriminant analysis with the variance mistakenly replaced by a
standard deviation.

The random feature search actually faired surprisingly
well, producing an average of 7 errors on the validation
set and successfully classifying all of the evaluation
patterns in 122 of the 500 runs.

Table 1: AML/ALL Results

Random
search

GA search

Avg generation finished 43 +- 12 22 +- 14

Test set error rate 0.2 0.16
Avg # validation set errors 7.1 +- 3.4 5.5 +- 3.4
Avg # eval set errors 1.7 +- 0.8 0.08 +- 0.3
Avg # hidden units 5.3 +- 1.7 6.1 +- 1.1

Avg # inputs 5.4 +- 1.5 5.5 +- 1.3

Results of 500 runs with population 100, hid_mut_rate
0.4, num_in_mut_rate 0.001, input_mut_rate 0.3,
max_num_in 8, min_num_in 3, max_num_hid 8 and
max_gen 50.

Based on these results, the feature space for AML/ALL
seems to be extremely rich in features useful for neural
network training. One interesting result is that both
genetic and random search consistently identified many
of the same genes. In fact the top six genes most
frequently used as inputs for successful networks were
the same for both random and genetic search.

3.2 ENSEMBLES

Although training set performance was excellent,
validation performance was inconsistent and
unsatisfactory. One common method of improving the
generalization performance of classifier systems is the
creation of ensembles (Breiman 1994). In this
technique, the predictions of multiple classifiers are
combined in order to produce the class prediction for
each sample in the test set. Of the various ways of
combining the classifiers to form an ensemble, the
simplest is to give each classifier a single vote for each
prediction to be made. The final prediction is simply
the class with the most votes.

3.2.1 RESULTS - RANDOMLY
CONSTRUCTED ENSEMBLES

Initially, tests were conducted with ensembles created
from the networks constructed via genetic and random
search as presented in section 3.1. For these ensembles,
although no specific attempt was made to insert
diversity, the extremely stochastic processes of feature
selection, network architecture selection, and network
training resulted in substantially heterogeneous
ensemble components. For this treatment, the 500 runs
of random and genetic search were randomly divided

into 50 trials of 10 runs (networks) each. For each trial,
the classifications were made by polling the predictions
of each of the networks in the ensemble.

For the ensembles created from the genetic search runs,
this brought the test set error rate down to 0.05 with an
average of 1.7 +- 1.1 errors per run. The mean error
rate for the ensembles created with random search was
0.07 with an average of 2.4 +- 1.96 errors per run. In
addition to the improved error rate, the ensembles
produced much more consistent results.

3.2.2 SMARTER ENSEMBLE CREATION

It is widely acknowledged that if the “ambiguity” of the
component classifiers of an ensemble can be increased
without reducing their individual error rates, the
advantage from using an ensemble is increased (Krogh
& Vedelsby 1995). In this case, ambiguity refers to the
amount of disagreement between the component
classifiers of an ensemble. The more a set of classifiers
disagrees on the classifications to be made, the greater
the advantage from combining them. This is because
ensembles improve on individual classifiers by taking
advantage of a wider variety of mappings from feature
space to target space. If each component in an
ensemble represented the same mapping, nothing would
be gained. Thus, when constructing an ensemble,
diversity of the component classifiers should be
considered in addition to the generalization error of
each component (Cunningham & Carney 2000).

One way to promote diversity among the classifiers of
an ensemble is to use different subsets of the available
features to construct each component classifier. Ho
(1998) demonstrates that constructing component
classifiers even from randomly selected features can
improve the performance of ensembles significantly as
compared to ensembles constructed from all of the
features available. Guerra-Salcedo & Whitley (1999)
employ the same basic approach as we presented in
section 3.2.1, using a GA to search for good subsets of
features to use as the components of an ensemble.
They show some improvement over the random feature
selection technique, particularly in domains with large6

numbers of features. Neither of these approaches
explicitly selects for ambiguity in the component
classifiers.

We found that by explicitly measuring the ambiguity of
different ensembles and selecting those ensembles with
the highest ambiguity, error rates could be slightly
improved. Following the concept outlined in

6 The greatest number of available features in the datasets used in
Guerra-Salcedo & Whitley (1999) was only 180.

Cunningham and Carney (2000), we developed the
following measure of ambiguity:

 n

 A(e) = ∑ D(x)-1 (1)
x=0

where the ambiguity of an ensemble e as measured
across a test set of n samples is equal to the sum of the
inverse of the number of disagreements D(x) between
the classifiers in the ensemble for all x ∈ n.

To identify the strength of this measure in predicting
the accuracy of the ensembles, 1000 ensembles were
randomly constructed from 100 networks found via
genetic search. Each classifier was constructed with 11
randomly selected networks and its error rate and
ambiguity were measured.

Figure 1: Ensemble error rate versus ambiguity as
measured in equation (1). The line is derived from a
linear regression.

Although we did not test the statistical significance of
the relationship displayed in Figure 1, the results
support the concept that ensemble accuracy can be
improved through increasing component ambiguity and
also that equation (1) seems to capture this relationship
for our system.

The following table shows the advantage gained
through ensemble formation and shows the correlation
between ensemble ambiguity and ensemble
generalization. Each column presents the results of
using the same 100 networks/input sets discovered via
genetic search but combining them in different ways.

Table 2: Comparing Ensemble Construction

Single Rand Highest
A

Lowest
A

Number
tested

100 1000 100 100

Number
components

1 11 11 11

Avg.
validation
errors

5.9 +-
3.2

1.7 +-
0.99

1.5 +-
0.92

2.7 +-
1.3

Avg. eval
errors

0.19 +-
0.4

0 0 0

In Table 2, the last two columns show the average
number of errors for the 100 ensembles with the highest
ambiguity and the 100 ensembles with the lowest
ambiguity respectively. These were drawn from the
same batch of 1000 ensembles used for the “Rand”
column that displays the results of randomly chosen
ensembles. The “Single” column shows the results from
testing each of the networks used to create the
ensembles individually.

These results suggest that the final stage of our
algorithm should focus on the informed selection of
ensemble components. Here, we randomly combined
components and select those ensembles with the highest
ambiguity measures. Although useful, this method
could be substantially improved and optimized in future
iterations of this work.

4 OTHER APPROACHES

Before concluding, it is important to point out the other
methods that have been used for class prediction using
gene expression data. Dudoit et al (2000) performed a
comparison of various approaches to this problem.
Focusing on the classification of tumor samples, they
applied Fisher linear discriminant analysis (FLDA),
diagonal linear discriminant analysis (DLDA),
maximum likelihood discriminant rules, nearest
neighbor classifiers, classification trees, and
aggregation of classification trees, with additional tests
employing bagging and boosting of the data.

For all of the datasets tested, they performed feature
selection based on the ratio of each gene’s between-
groups to within-groups sum of squares. Their
classifiers employed either the top 30, 40, or 50 of these
genes (with some tests with 200). Testing was
conducted by training the classifiers on two thirds of
the available samples and validating on the remaining
third. They report that the nearest neighbor and DLDA
predictors had the smallest error rates, while FLDA had

the highest. The error rates were generally surprisingly
low across most methods. In fact, for the dataset that is
used in the present study (AML/ALL), the mean error
rate of DLDA was zero.

In order to compare our technique with those
investigated by Dudoit and colleagues, we ran a series
of trials composing our training and test sets using their
2:1 ratio and randomizing the samples in between runs.

Do to time constraints, only 21 networks were produced
for each random sample set. This small number of runs
did not provide sufficient variability to allow us to take
advantage of the ambiguity measure. Hence, all 21
networks were combined to form the ensemble tested
for each sample set. For 80 random sample set
divisions, the average test error rate of the ensembles
was 0.047. With 24 test cases, this corresponded to an
average of 1.1375 errors with a standard deviation of
0.9.

While not obtaining the near perfect performance of
DLDA, based on the figures presented in their paper,
our algorithm seems to perform similarly to the nearest
neighbor approach that was their second best classifier.
Unfortunately, since they did not provide actual
numbers for their error rates, it was not possible to do a
direct comparison.

5 DISCUSSION

The good performance of straightforward methods such
as DLDA might seem to discount the importance of the
investigation of more complicated strategies such as
neural networks and classification trees, however, as
Dudoit et al point out, “there are factors other than
accuracy which contribute to the merits of a given
classifier”.

In the context of gene expression studies, the primary
problem with techniques such as DLDA is that they
ignore interactions between genes. These interactions
are important not only because they could potentially
aid in more complex classifications, but also because
they are biological realities.

Genes do not act independently; they form complex
genetic circuitry regulating specific biological
functions. In order to understand the biological
processes corresponding to different patterns of gene
expression it is necessary to understand the
relationships between the different genes in the system.
If a classifier is to be useful in elucidating these
potentially complex patterns of gene interaction, it is
essential for it to be capable of representing those
patterns.

It has already been established that neural networks can
learn to recognize extremely complex patterns. As
more training data comes available, they will
undoubtedly be relied upon heavily in the classification
and interpretation of gene expression studies. The
primary challenge in using them will remain to be in
feature selection and in deciphering the patterns that
they discover.

6 CONCLUSIONS

To our knowledge, this paper represents the first
successful application of neural networks to
classification based on gene expression. It is also the
first to apply the genetic algorithm wrapper
methodology in a domain with thousands of available
features. Investigations of the use of ensembles of
neural networks show consistent improvement over
single networks and add anecdotal support to the
premise that increased component ambiguity increases
the gain realized from ensemble formation. On this
dataset, our method is not quite as accurate as the best
linear method. Despite this, the GA/neural network
approach remains a useful tool for comparison and
provides a much greater potential for scaling to more
complex classifications.

References

Breiman L. (1994). Bagging Predictors. Technical
Report 421, Dept. Statistics Technical Report 421,
University of California, Berkeley, California.

Chtioui Y., Bertrand D., Barba D., (1998). Feature
Selection by a Genetic Algorithm. Application to Seed
Discrimination by Artificial Vision. J. Sci Food Agric
76: 77-86.

Cunningham P., Carney J., (2000). Diversity versus
Quality in Classification Ensembles Based on Feature
Selection, Trinity College Dublin, Computer Science
Technical Report: TCD-CS-2000-02, submitted to
ECML-2000.

Dudoit S., Fridlyand J., Speed T.P. (2000). Comparison
of discrimination methods for the classification of
tumors using gene expression data. Technical Report,
Department of Statistics, UC-Berkeley

Ho, T.K. (1998). The Random Subspace Method for
Constructing Decision Forests, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20, 8, 832-
844.

Golub T.R., Slonim D.K., Tamayo P., Huard C.,
Gaasenbeek M., Mesirov J.P., Coller H., Loh M.L.,

Downing J.R., Caligiuri M.A., Bloomfield C.D., Lander
E.S. (1999). Molecular classification of cancer: Class
discovery and class prediction by gene expression
monitoring. Science 286: 531-537.

Guerra-Salcedo C., Whitley D. (1999). Genetic
Approach to Feature Selection for Ensemble Creation.
GECCO, 1999, Proceedings of the 1999 Genetic and
Evolutionary Computation Conference (GECCO 99).
Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela,
Smith, eds., Morgan Kauffmann, 236-243.

Hallinan J., Jackway P. (1999). Simultaneous evolution
of feature subset and neural classifier on high-
dimensional data. 1999 Conference on Digital Image
Computing and Applications (DICTA'99).

Krogh A, Vedelsby J (1995). Neural network
ensembles, cross-validation and active learning, in:
Advances in Neural Information Processing Systems 9,
G. Tesauro, D. Touretzky and T. Lean, eds., MIT Press,
231-238.

Naef F, Lim D.A., Patil N, Magnasco M.O. (2001),
"From features to expression: High-density
oligonucleotide array analysis revisited",
LANL e-print http://xxx.lanl.gov/abs/physics/0102010

Plaut D., Nowlan S., Hinton G.E. (1986). Experiments
on learning by back propagation. Technical Report
CMU-CS-86-126, Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams
(1986). Learning internal representations by error
propagation. In D.E. Rumelhart, J.L. McClelland, and
the PDP Research Group (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, pp. 318-362.
Cambridge, MA: MIT Press. Reprinted in Anderson
and Rosenfeld (1988).

Setiono, R., Liu, H., (1997) Neural-Network Feature
Selector, IEEE Transactions on Neural Networks, 8,
(3), 654-662.

Siedlecki W., Sklansky J. (1989). A Note on Genetic
Algorithms for Large-scale Feature Selection. IEEE
Transactions on Computers, 10, 335-347.

Yang J., Honavar V. (1998). Feature Subset Selection
Using a Genetic Algorithm. In: Feature Extraction,
Construction, and Subset Selection: A Data Mining
Perspective. Motoda, H. and Liu, H. (Ed.) New York:
Kluwer.

