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Abstract

The study of expression quantitative trait loci (eQTL) is a powerful way of detecting transcriptional regulators at a genomic
scale and for elucidating how natural genetic variation impacts gene expression. Power and genetic resolution are heavily
affected by the study population: whereas recombinant inbred (RI) strains yield greater statistical power with low genetic
resolution, using diverse inbred or outbred strains improves genetic resolution at the cost of lower power. In order to
overcome the limitations of both individual approaches, we combine data from RI strains with genetically more diverse
strains and analyze hippocampus eQTL data obtained from mouse RI strains (BXD) and from a panel of diverse inbred strains
(Mouse Diversity Panel, MDP). We perform a systematic analysis of the consistency of eQTL independently obtained from
these two populations and demonstrate that a significant fraction of eQTL can be replicated. Based on existing knowledge
from pathway databases we assess different approaches for using the high-resolution MDP data for fine mapping BXD
eQTL. Finally, we apply this framework to an eQTL hotspot on chromosome 1 (Qrr1), which has been implicated in a range
of neurological traits. Here we present the first systematic examination of the consistency between eQTL obtained
independently from the BXD and MDP populations. Our analysis of fine-mapping approaches is based on ‘real life’ data as
opposed to simulated data and it allows us to propose a strategy for using MDP data to fine map BXD eQTL. Application of
this framework to Qrr1 reveals that this eQTL hotspot is not caused by just one (or few) ‘master regulators’, but actually by a
set of polymorphic genes specific to the central nervous system.
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Introduction

Understanding how genetic variability affects molecular phe-

notypes is important for revealing the molecular mechanisms

underlying physiological phenotypes such as complex diseases [1].

Genome-wide measurements of RNA expression levels as

molecular phenotypes have been correlated to genetic variation

in a variety of biological contexts [2–6]. Such data are used for the

identification of expression quantitative trait loci (eQTL), i.e.

genomic regions whose genotype is correlated with the RNA

expression in a panel of genetically diverse individuals [7]. The

underlying assumption is that such eQTL regions contain direct or

indirect regulators of the target gene in question.

The considerable advances in eQTL studies notwithstanding,

there are still open questions about the biology and applications of

eQTL mapping [8]. One persistent challenge in the field is the

selection of loci and genes that should receive further biological

investigation. For instance, eQTL are often only poorly repro-

ducible across studies [9]. The difficulty to reproduce eQTL (and

other genetic associations) is partly explained by differences

between the study populations: different populations have different

genetic backgrounds, which may considerably alter the phenotypes

associated with a given allele. Secondly, the genome-wide

measurement of RNA levels is noisy, which may result in many

spurious eQTL. Finally, because of the large number of statistical

hypotheses tested in eQTL studies (all genes versus all markers)

such studies notoriously suffer from high false-positive rates unless

stringent controls for multiple testing are applied.

In order to overcome these problems, recent studies have

combined different model populations in their studies, thereby

enhancing genetic resolution, power of the study and reproduc-

ibility of the findings [10,11]. The reproducibility of eQTL in two

populations of closely related mice, BXD recombinant inbreds (RI)

[12] and an F2 cross between the same parental strains has been

reported to be high [13]. However, it is not clear to which extend

eQTL will replicate in more diverse panels within the same

species. Recently, Gatti et al. [10] compared mouse liver eQTL

from BXD RI lines and inbred strains of the Mouse Diversity
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Panel (MDP). Consistent with other reports, they found that cis-

eQTL replicate with greater frequency than trans-eQTL, although,

a systematic, quantitative assessment of the extent of consistency

between the two datasets is lacking.

Another major problem of current eQTL studies is the correct

identification of the causal genes. Due to linkage disequilibrium,

several genes can be near each marker making it difficult to

identify which of the genes are the causal factors responsible for

the observed expression phenotype. While linkage studies in F2 or

recombinant inbred (RI) lines are thought to have reasonable

statistical power, the limited number of recombination events in

such crosses produces large QTL intervals that make the selection

of candidate genes difficult. One approach that has been used to

narrow individual QTL intervals is in silico haplotype mapping in

laboratory inbred strains [14,15]. Other approaches utilize

additional, independent information such as protein interaction

data in order to identify causal genes [16–18]. For a single

phenotype, several methods have been described to combine QTL

data from different crosses [19,20]. However, due to the high cost

of replicating a large eQTL study and the computational issues of

combining data for thousands of transcripts, these methods are

difficult to apply to most eQTL studies. Using genetically more

diverse populations has the advantage that a higher density of

informative genetic markers can be achieved, which potentially

increases the mapping resolution. Unfortunately, those studies

often suffer from poor statistical power [21].

Thus, it has been suggested that eQTL obtained from

populations with greater genetic diversity, such as the MDP,

should be combined with RI population-based data [10,11,22].

The underlying idea is to use the RI population-based data for

identifying potentially causal loci and then use the high-resolution

data for ‘fine mapping’ the causal gene. While there is evidence

that this data integration helps in identifying causal genes, a

systematic analysis of its potential has not been performed. It

remains to be shown that high- and low-density eQTL data are

consistent and that combining them aids the robust identification

of truly causal genes.

In order to address these open questions, we investigated the

reproducibility and fine mapping of eQTL based on BXD RI lines

[23] and inbred strains of the MDP [21]. We measured

hippocampus gene expression in 28 strains from the MDP and

compared and integrated those data with corresponding eQTL

data from the BXD panel [24]. We systematically show

consistency between the two datasets for a wide range of eQTL

thresholds and discuss various strategies to integrate high- and

low-resolution eQTL data for fine mapping purposes. We assessed

those data integration schemes for fine mapping by quantifying the

ability of each method to reproduce known functional associations

between genes. Finally we used the MDP-based data to improve

the genetic dissection of a brain-specific eQTL hotspot on distal

Chromosome 1 [25].

The actual density of markers is not the limiting factor for the

genotype resolution in the two populations. While, BXD and

MDP have been genotyped at virtually the same markers, the

smaller number of recombination events in the BXD population

creates larger chromosomal regions that are inherited from the

same parent. Consequently, few markers are actually informative;

that is, several adjacent markers carry the same information about

the origin of a particular genomic region. In the remainder of this

text we use the terms ‘MDP markers’ and ‘BXD markers’ to

denote those markers that are informative in the respective

populations. Note that the majority of BXD markers are part of

the MDP markers (3055 out of 3791, 80%).

Results and Discussion

Consistency between MDP and BXD eQTL datasets
An overview of eQTL datasets considered in this study is

provided in Table 1. In order to investigate the reproducibility of

eQTL between independent mouse populations, we compared the

number of eQTL common between the MDP and BXD datasets

to the number of common eQTL obtained with randomized data.

All 25,173 probesets with unique genomic locations shared

between the BXD and MDP datasets were included in this

comparison. We tested two strategies comparing the eQTL scores:

the exact comparison directly compares the scores of common

markers, whereas the interval mapping integrates the information

from several (high-resolution) MDP markers near (low resolution)

BXD markers (Figure 1, Table 2). At very high quantile cutoffs

(99.99% or higher) between 1% and 2% (65–165) of the BXD

eQTL could be replicated in the MDP population. Even though

this is only a small fraction of all eQTL, the overlap is much larger

than expected by chance (genome-wide comparison; Fisher’s exact

test p-value at 99.99% quantile cutoff: ,161024 for the exact

comparison, 561024 for the interval comparison).

Next, we extended the consistency analysis over a continuous

range of thresholds. Figure 1 shows the fraction of common eQTL

as a function of both the BXD and MDP eQTL scores. In order to

show the significance of the overlap we compared the fractions of

overlapping eQTL resulting after randomizing the data. We

binned BXD and MDP eQTL scores, thereby establishing a two-

dimensional grid of the two scoring schemes. Each bin in this grid

contains eQTL with scores comparable within BXD and within

MDP data. For the randomization we shuffled the BXD and MDP

scores within each bin by re-assigning them to different target

genes. We then compared the number of ‘common’ eQTL in each

Table 1. Overview of eQTL datasets used.

Dataset BXD eQTL dataset MDP eQTL dataset

Experimental source Overall et al. [24] This study a

Genetic reference panel BXD Mouse Diversity Panel (MDP)

Number of strains 71 28

Number of microarrays 201 28

Number of markers 3,791 101,104

Number of probe sets 45,101 44,922

eQTL detection method QTL Reaper [13] Haplotype Association Mapping (HAM) [51]

aGenomics Institute of the Novartis Research Foundation (San Diego, CA, USA).
doi:10.1371/journal.pone.0013920.t001
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randomized bin to the observed number. Figure 1 clearly shows

that the overlap expected by chance is substantially smaller than

the observed overlap for a wide range of thresholds.

The fraction of common signals in the actual measurements is

always higher than the shuffled one, both in the exact and interval

comparison schemes. In the interval scheme, the average number

of common peaks is approximately three times higher, but the

signal-to-noise ratio – i.e. the difference between the fraction of

correct and shuffled comparisons – is smaller over the entire range

of thresholds. Hence, the interval mapping yields a higher

recovery at the cost of lower specificity (more false positives).

Figure 2 shows the genomic distribution of common eQTL after

the exact comparison at the 99.5% quantile cutoff (1,071 matches

with comparison p-values below 0.05). The matrix of common

eQTL in Figure 2a shows that local (cis-) eQTL are much more

reproducible than distant (trans-)eQTL. The majority of common

eQTL localizes at the diagonal or in its immediate vicinity. Local

eQTL linking a target gene to its own locus are assumed to be due

to polymorphisms acting in cis, e.g. in the promoter of the gene

(hence the name cis-eQTL). Distant eQTL, on the other hand, are

due to polymorphisms in genes other than the target gene. Such

trans-eQTL exerts its effect through variable activity of a regulator

controlling the target. The overrepresentation of cis-eQTL in

Figure 2 is consistent with the fact that, in general, cis-eQTL tend

to produce stronger statistical associations than trans-eQTL [26]

and are easier to reproduce [10,13].

For each marker we computed the number of eQTL common

between BXD and MDP (‘common eQTL frequency’, CEF).

Plotting the CEF across the genome (Figure 2b) indicated a non-

random distribution with some hotspots along the genome (black

bars). Among these eQTL-hotspots is a well-studied hotspot on

chromosome 1 [25]. To assess the significance of these hotspots,

we randomized the data in two different ways: first by shuffling

marker positions and second by randomizing probeset assign-

ments. The first randomization shuffled the assignment of eQTL

to genomic positions (i.e. markers), yielding global p-values for the

observed frequencies (dotted red lines in Fig. 2b). In the second

scheme, we randomized the probe set assignment of the eQTL at

each locus, i.e. eQTL from MDP were compared against random

probesets from BXD. This second approach accounts for the fact

that some loci have large numbers of eQTL, which may yield large

CEF simply by chance. However, the shuffled values generally

yield few common eQTL (the real values are higher than the

shuffled values in 39 out of the 44 peaks shown in Figure 2b). In

some cases the number of observed overlapping eQTL is much

higher than expected by chance (e.g. on chromosomes 1, 4, 8, 11

and 19). However, when less strict eQTL thresholds are used, we

could observe a similar genomic distribution of CEF for correct

and shuffled comparisons (data not shown). This suggests that

several trans-bands observed at high-confidence thresholds are

common to MDP and BXD and are of biological significance.

This is an important finding, as eQTL-hotspots are often

spuriously identified due to batch-effects or population sub-

structure [27–29]. Since the hotspots in Figure 2 were reproduced

in two different populations they are much less likely to be

artifactual. Taken together, these observations suggest that the

MDP and BXD eQTL are consistent, that high-scoring eQTL can

be reproduced and that several eQTL hotspots are conserved

across the two mouse panels.

Integration of MDP and BXD eQTL data for fine mapping
Given the high statistical significance of the overlap between the

two populations, we sought to use the high-resolution MDP data

for fine mapping causal genes in loci that are significant according

to the BXD panel. Given a locus with several candidate genes, we

wanted to use the MDP data to refine the identification of the

causal gene. Here we considered a situation where a marker is

strongly linked to some target gene based on the BXD data. All

genes between the two flanking markers from the BXD dataset are

putative transcriptional regulators. The higher density of infor-

mative markers in the MDP population may help to select the

most likely causal gene.

In order to assess the performance of the MDP-based fine

mapping, we decided to restrict the analysis to eQTL with very

strong association signals in both the BXD and MDP datasets (see

Materials and Methods). Application of our selection criteria

yielded a list of 105 suitable eQTL intervals, which we

subsequently used for assessing the MDP-based fine mapping.

We scored the performance of our fine mapping based on whether

the selected gene from the locus is annotated as a member of the

same pathway as the target gene. Using the pathway annotation

from the Kyoto Encyclopedia of Genes and Genomes (KEGG) we

quantified the number of suggested causal genes being annotated

for the same pathway as the target gene of the respective eQTL

(see Materials and Methods for details). This assessment is based

on the assumption that the source gene (i.e. the QT gene) and the

Table 2. Consistency of eQTL datasets.

Quantile cut-off 0.99 0.999 0.9999 0.99995

Number of selected eQTL (BXD) 956,272 95,468 9,545 4776

Number of selected eQTL (MDP) 25,357,555 (953,407)a 2,523,474 (95,121) 252,525 (9,605) 126,068 (4,801)

Number of common eQTL (NC) 5,897 (8,295) 416 (572) 106 (165) 65 (101)

Fraction of NC with P-value , = 0.05 49.0% (34.5%) 100% 100% 100%

NC/NBXD
b 0.006 (0.0087) 0.0044 (0.006) 0.011 (0.017) 0.014 (0.021)

aValues in parentheses refer to interval comparison.
bNC, number of common eQTL; NBXD, number of selected eQTL in BXD dataset.
doi:10.1371/journal.pone.0013920.t002

Figure 1. Consistency between MDP and BXD eQTL datasets. Average fraction of common eQTL signals, FC = mean(NHITS/(NMDP+NBXD)), as a
function of BXD and MDP signal detection thresholds. The exact comparison (left) compares signals at identical markers in the two populations,
whereas the interval comparison (right) summarizes the MDP values in proximity of BXD markers. Top panels: actual measurements. Middle
panels: shuffled comparisons (10 randomizations). Bottom panels: difference between real and shuffled data for exact and interval comparison.
doi:10.1371/journal.pone.0013920.g001
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target gene are likely to be involved in the same biological process.

Hence, methods yielding a higher enrichment for genes being

members of the same pathway gain higher credibility. According

to this criterion causal genes should rank high (be on top of the list)

when sorted based on the MDP eQTL. Figure 3a shows that

MDP-based fine mapping ranks functionally related genes higher

in the list than expected by chance (top 50%: 63 cases; bottom

50%: 29 cases; not ranked: 13 cases). Figure 3b shows that genes

from the same pathway are significantly more often ranked highest

when using the MDP-based mapping as opposed to picking the

gene closest to the BXD marker or a random gene from the locus.

When using the MDP data the pathway members rank highest in

Figure 2. Co-localizing common eQTL between MDP and BXD datasets. The top 0.5% of all eQTL of the two datasets were compared using
the ‘exact’ comparison and common eQTL are shown. A: matrix of common eQTL. X-axis shows marker positions and y-axis shows target gene
positions. Each dot corresponds to an eQTL common between the two studies. B: Number of common eQTL across the genome within 1320 equally
sized bins of 2 Mb. Black bars report the number of common eQTL in each bin, whereas the red error bars represent the mean number and standard
deviation of hits in each bin obtained after shuffling the probesets (10 randomizations). Horizontal red lines represent global p-values obtained after
shuffling bin positions. Results are shown for bins with at least 5 common eQTL.
doi:10.1371/journal.pone.0013920.g002
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33% of the cases, as opposed to 8% when selecting the gene that is

closest to the BXD marker (Sc) and 10% when choosing a random

gene from the locus (SR). These numbers include several cis-eQTL,

hence, in those cases the causal and target gene are identical.

However, since our fine-mapping algorithm did not consider

location information about target genes, there is no particular

advantage (or bias) for resolving causal genes in cis-eQTL regions

except for the fact that cis-eQTL in general tend to be stronger. In

order to demonstrate that the enrichment of true causal genes is

independent of cis-eQTL we hence repeated the analysis excluding

all cis-eQTL (Figure S1). Due to the weaker eQTL signals we did

in fact observe a decrease of the overall performance when

exclusively looking at trans-eQTL. Yet, using the MDP data for

fine mapping still significantly improved the identification of causal

genes. Thus, even though the MDP data do not always correctly

predict the most likely causal gene, the data substantially improve

the gene selection.

Generally, we rank the genes within each locus based on MDP

markers positioned inside the transcribed region of the genes.

However, in cases when no MDP marker is located in the

Figure 3. Integration of MDP and BXD eQTL data for fine mapping. A: Distribution of the ranking results for 105 selected eQTL intervals with
strong association signals in both the BXD and MDP datasets. The x-axis shows the number of candidate genes at each locus and the y-axis shows the
rank (scaled between 0 and 1) of genes that are in common pathways with the target genes. Thus, each eQTL interval is represented as a point of
coordinates (RK, NG) where RK is the rank of the (presumed) causal gene from the KEGG pathway and NG is the number of genes within the interval.
Circle sizes are proportional to the number of eQTL. Pathway co-members rank significantly above random when using the MDP data as additional
information for scoring candidate genes. B: Assessment of MDP-based candidate gene selection. For each of the 105 selected loci a selected
candidate gene was considered as a true positive if it is part of a common pathway with the target gene. The figure shows the fraction of loci with
correct selections. Bars show results when ranking genes based on their MDP scores for different values of the ext parameter (see schema on the
right), using full locus and restricted locus sizes (i.e. loci are restricted to 0.5 cM around the BXD marker). Horizontal lines show true positive rates for
random selections (SR) and selecting the closest gene (SC). Black lines: ‘closest gene’ success rate (SC) and random success rate (SR) for full locus sizes.
Grey lines: SC and SR for restricted locus sizes (rls).
doi:10.1371/journal.pone.0013920.g003
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transcribed region we assign scores based on markers in the

proximity of the genes. If there is no marker in the proximity of a

gene that gene remains unscored and it is not considered as a

causal gene (see Materials and Methods for details). The definition

of this ‘search region’ is a critical parameter that affects the

prioritization of genes within a locus, as demonstrated in Figure 3b.

When the search region is too small, many genes remain unscored

and are thus not ranked, yielding a high false negative rate. If, on

the other hand, the search region is too large, markers are

considered that are too far away from the respective gene and thus

unlikely to correctly map the genotype of the gene.

In addition, we observed a correlation between the strength of

MDP eQTL scores and their ability to correctly map causal genes.

Figure S2 indicates that the consideration of lower-scoring eQTL

yields smaller fractions of pathway members that are ranked first.

The fact that the performance deteriorates at lower scores

underlines once more that the consistency of high MDP scores

with pathway membership is not by chance. Thus, high-scoring

MDP eQTL can be used for improving the detection of causal

genes; however, weaker MDP scores should be used with caution.

Defining the locus
If no additional information is available, one has to assume that

the genetic variation causing the phenotypic change (i.e.

expression change) may be located anywhere between the two

markers neighboring the linked marker [30]. However, if the

genetic distance between the linked marker and the flanking

markers is large, it is less likely that the causal genetic variation is

far away from the linked marker (i.e. close to the flanking markers).

Thus, in order to further improve the causal gene identification it

may be useful to only consider genes at a limited genetic distance

away from the linked marker.

For testing this hypothesis we limited the set of genes considered

at a given locus by a maximal genetic distance (see Materials and

Methods for details). We defined eQTL intervals via genetic

distances expressed in centimorgans (cM) in order to restrict

interval sizes and the number of genes associated with each

selected marker. Then we re-ran the fine mapping analysis as

described before at different DcM (0.1, 0.3, 0.5, 0.7, 1, 1.5, .1.5),

while simultaneously varying the search region around each gene.

Figure 3b and Figure S3 show that restricting the locus size yields

consistently better results as opposed to considering all genes

between the flanking markers. Optimal performance was obtained

with 0.5 cM.

Using MDP eQTL to dissect an eQTL hotspot on distal
Chromosome 1

Several eQTL studies with intercross or RI strains have

observed that many distant eQTL map to the same location on

a chromosome, giving rise to what is known as eQTL hotspots or

trans-bands [24,31,32]. In general, the presence of eQTL hotspots

suggests either the presence of a master regulator gene which

controls the expression of groups of genes together or the presence

of several tightly linked genes within the hotspot, each of which

regulates the expression of a subset of genes mapping to this locus

[31,33,34]. Here we illustrate how the MDP eQTL dataset can be

used to improve the resolution at a previously studied hotspot on

distal chromosome 1. This analysis consists of two major parts: first

we performed the MDP-based fine mapping as outlined above on

a small set of eQTL with very high BXD and MDP eQTL. This

analysis identified 14 local eQTL that could be reproduced in the

MDP population and it identified high-confidence causal genes. In

the second part we relaxed the criteria for inclusion of MDP

eQTL in order to identify functional enrichment of genes mapping

to sub-regions of Qrr1.

The distal part of mouse chromosome 1, (172.5–177.5 Mb)

harbors 16 BXD markers and 122 known genes (Mouse Genome

NCBI m37). It is also known as Qrr1, ‘‘QTL-rich region on

chromosome 1’’, as it contains a large number of previously

identified QTLs for behavioral traits, including open field activity

[35], fear conditioning [36], rearing behavior [37], and other

measures of emotionality [38,39]. In addition to behavioral

phenotypes, a number of other metabolic, physiological and

immunological traits have been repeatedly mapped to this region

[25]. Of particular interest is the association between Qrr1 and the

response to a wide range of neuroactive drugs [40–43].

Fine mapping Qrr1
Qrr1 can be broadly divided into a gene-rich proximal part

(Qrr1p, 172.5–174.5 Mb) and a relatively gene-sparse distal part

(Qrr1d, 174.5–177.5 Mb). Recently, Mozhui et al. [25] revealed

multiple distinct loci in Qrr1 that regulate gene expression

specifically in the central nervous system (CNS). In particular,

they focused on Qrr1d and proposed Fmn2, Rgs7 and a cluster of

tRNAs as strong candidate regulators of this distal part of Qrr1.

However, due to the limited resolution, they could not subdivide

transcripts that map to Qrr1p into smaller functional modules.

Based on the fact that Qrr1 has 254 informative markers in the

MDP dataset we expected that incorporating the MDP-based

eQTL in the analysis might further resolve the structure of this

region. We first selected targets with strong BXD eQTL in Qrr1,

and then examined the same set of target transcripts in MDP to

better refine their eQTL positions. In BXD, there are 307 genes

with maximal LOD scores on markers located in Qrr1. In order to

obtain a set of high-confidence Qrr1 target genes we filtered 205

genes having eQTL above the 99.9% quantile (of the entire eQTL

matrix) for the subsequent analysis. In BXD, this cutoff

corresponds to transcripts with a minimum LOD score of 4

(genome-wide p-value of approximately 0.01). In order to apply

the fine-mapping procedure described above we further filtered

this list for targets with MDP scores above the 99.9% quantile (37

eQTL).

Of the 182 BXD eQTL, 22 have a local eQTL in Qrr1 and 11

of these local eQTL could be replicated in MDP (Table S1).

Importantly, in 4 of those cases the maximum MDP score was at

the target gene itself and in the remaining 7 cases it was very close

(,500 kb) to the target gene. This suggests that most or even all of

the causal mutations in Qrr1 act in cis.

The MDP-based fine-mapping further identified 26 trans-eQTL

mapping to 14 putative regulators (or QT genes) in Qrr1. Only 4 of

these regulators do not have a cis-eQTL themselves (Apoa2, Fcgr2b,

Olfr220, Hsd17b7). However, upon closer inspection we noticed

that all four of the candidate QT genes had another gene with a

cis-eQTL nearby (,100 kb, see Table S1 for details). Hence, if

these other genes were causing the respective eQTL, all causal

genes in Qrr1 would be affected in cis.

In order to further corroborate these candidate regulators, we

integrated independent gene expression information. Mozhui et al.

[25] had already shown that the Qrr1 is specific for the CNS.

Hence, we suspected that the genes causing the transcript variation

of Qrr1 target genes should be specifically expressed in the CNS. In

order to confirm this hypothesis we checked whether genes with

cis-eQTL are more specifically expressed in the CNS than others,

which indeed is the case (Figure 4). However, the 4 candidate

regulators without cis-eQTL only have poor CNS specificity of

their expression (Figure 4) rendering them even less likely to be

truly causal. Whatever the true QT genes are in these cases, we

Low- and High-Resolution eQTL
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can conclude that most eQTL in Qrr1 are ultimately caused by cis

effects, since virtually all high-significance eQTL could be

associated with a gene having a cis-eQTL.

For the remaining analysis we relaxed the MDP eQTL

threshold in order to increase the coverage, i.e. we considered

all eQTL with an MDP eQTL above the 95% quantile (182

eQTL, the BXD cutoff was not changed). The larger number of

eQTL considered allows us to assess whether eQTL target genes

are enriched for known target genes or for certain functional

categories. Figure 5 shows the location of MDP markers in Qrr1

along with the respective number of target genes per marker. This

analysis revealed an intricate sub-structure of Qrr1: there are

distinct sub-regions having significantly larger numbers of target

genes than other regions of Qrr1. Importantly, Figure 5 reveals that

Qrr1 consists of several eQTL hotspots. The fact that Qrr1 harbors

several causal genes is also supported by the robust detection of 11

local QTL in both mouse populations.

Usf1 regulates many Qrr1 target genes
Qrr1 encodes two transcription factors, Atf6 and Usf1, while only

the latter has a significant number of eQTL mapping to it. Hence,

we set out to validate whether Usf1 might be truly causal for these

eQTL. Usf1 is an essential transcription factor encoded in Qrr1p

(approximately 173.35 Mb, Figure 5). Plaisier et al. [44] had

measured the genome-wide response to over-expressing Usf1. This

data provides independent experimental validation of Usf1 target

genes. Overall, there are 50 Qrr1 target genes confirmed with the

BXD eQTL data (Fisher’s exact test p-value = 861026). Assuming

that Usf1 is actually causal for several eQTL, we hypothesized that

its target genes should be enriched among eQTL mapping close to

Usf1. Hence, we used this notion to assess the resolution obtainable

with the MDP data. In Figure 5c, the enrichment of known Usf1

target genes (Fisher’s exact test) is reported as a function of the

physical distance from the transcription factor, i.e. the length of an

exploratory interval centered on Usf1. A significant enrichment

occurs within 300 kb from the gene; this result is confirmed by

repeating the analysis at different thresholds in the BXD and MDP

datasets, as well as different cutoffs for defining targets from the

over-expression experiment (Figure S4). In order to demonstrate

the specificity of this finding, we repeated the analysis with a non-

candidate transcription factor in Qrr1 (Atf6) with an associated

dataset of differentially expressed genes after over-expressing Atf6

[46]. Only 13 transcripts could be mapped in this case (Fisher’s

exact test p-value = 0.02), without enrichment in target genes at

the Atf6 locus (Figure S4). These results confirm that a mapping

resolution of a few hundred kilobases is achievable with the MDP

data. Many of the Usf1 target genes mapping to this locus may be

indirectly affected by the Usf1 allele, i.e. they are not directly

regulated via Usf1 binding in their enhancer regions [44]. To

address this question and to further validate our conclusions we

utilized Usf1 DNA binding data measured with ChIP-Chip in

human hepatocytes [45]. Binding of Usf1 was detected for 22

orthologous genes mapping to Qrr1, 13 of which mapped to the

Usf1 locus (within 300 kb). This is a highly significant enrichment

(Fisher’s exact test p-value ,0.004), demonstrating that many of

the genes affected by the Usf1 polymorphism might in fact be

direct Usf1 targets.

Target genes mapping to Qrr1 sub-regions are
functionally distinct

Provided that several causal genes contribute to the trans-eQTL

observed in Qrr1 we reasoned that different parts of this region

Figure 4. CNS expression specificity of candidate regulators in Qrr1. CNS specificity of expression is expressed as t-test statistics comparing
expression in CNS tissues against all tissues tested. Box plots show distributions of t-scores for genes mapping to Qrr1. cis (BXD): subset of genes
with a cis-eQTL in BXD; cis (BXD+MDP): genes with a cis-eQTL in both BXD and MDP; no cis: genes localized in Qrr1 but without a cis-eQTL;
Candidates without cis: candidate causal genes (distant eQTL only) without a cis-eQTL.
doi:10.1371/journal.pone.0013920.g004
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should target functionally different groups of genes, i.e. the target

genes mapping to different loci in Qrr1 should be enriched for

different functions. To test this hypothesis we selected functional

categories that are significantly enriched among Qrr1 target genes

compared to the rest of the genome and checked whether those

categories are enriched among target genes mapping to specific

sub-regions of Qrr1. A complete list of all functional categories

considered can be found in Table S2. In order to resolve marker-

specific enrichment of functional classes, we computed the

average MDP eQTL score at each marker for all genes of a

specific class. This analysis was repeated in two different ways:

first with all genes from a functional class with a significant BXD

eQTL and secondly for the subset having a significant MDP

eQTL as well. However, both approaches yielded comparable

Figure 5. Using MDP eQTL to dissect an eQTL hotspot on distal Chromosome 1. A: Overview of candidate regulators number of eQTL
mapping to Qrr1. Vertical bars show the number of target genes per marker in MDP (for every gene, the strongest eQTL in MDP within Qrr1 is
selected). Labels at the bars illustrate enriched functional categories. Genes encoded in Qrr1 are shown at the bottom (top: forward strand, bottom:
reverse strand). The color gradient reflects CNS expression specificity (t-statistic). Green triangles indicate cis-eQTL in the BXD dataset, whereas blue
triangles represent a cis-eQTL detected in both BXD and MDP datasets. B: Detail of Qrr1p around 173 Mb. Labels of selected genes are shown. C:
Enrichment of Usf1 targets along Qrr1. Black line: enrichment (-logp) as a function of physical distance from the transcription factor, i.e. the length of
an exploratory interval centered on Usf1. Red lines show results for randomized Usf1 targets (Solid red line: average across 100 randomizations;
dotted red lines: average 6 standard deviation).
doi:10.1371/journal.pone.0013920.g005
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results (Figure S5). This analysis showed that several sub-regions

of Qrr1 are enriched for targets from specific functional classes,

some of which are indicated in Figure 5. See Figure S5 for a

complete overview.

Several mitochondrial genes have eQTL mapping between

172.7 and 173.3 Mb in Qrr1; ten of these genes possess a

mitochondrial transit peptide, which is required for transport of

the proteins across the mitochondrial membrane. Two candidate

QT genes encoded in this small region, Shdc and Tomm40l, also

localize to the mitochondria. In particular, Tomm40l is a channel-

forming protein implicated in the import of protein precursors into

mitochondria and interacts with mitochondrial targeting sequenc-

es [47]. Interestingly, the genes with transit sequences have trans-

eQTL that map within 200 kb of Tomm40l, suggesting that this

gene might in fact be causal for the eQTL mapping to this sub-

region.

Amino acid-tRNA synthetases (ARS) are also significantly

enriched among Qrr1 target genes [25], but at a different locus.

A locus at 173.3 Mb appears to be particularly important for

amino acid metabolism, as seven ARS, four amino acid

transporters and three other genes involved in amino acid

biosynthesis map to it. Mohzui et al. [25] proposed a tRNA

cluster in Qrr1 as a functionally pertinent candidate for the tRNA

synthetases. However, in BXD almost all ARS transcripts map to

the distal part of Qrr1, where very few tRNAs can be found. Using

the MDP data, the ARS genes map within 300 kb of the major

tRNA cluster in Qrr1 (25 tRNAs between 172.95 and 173.05 Mb,

reported in the tRNAscan-SE Genomic tRNA database [48]). As

mentioned above, genes mapping near 173.2 Mb are also

enriched among Usf1 targets. They include four ARS (Aars, Cars,

Yars, Mars), two transferases (Dpm1, B4Galt3), an amino acid

transporter (Slc6a20a) and an amino acid synthetase (Asns). Two of

the genes – B4Galt3 and Ppox – are also genes with cis-eQTL in

Qrr1. These observations imply that either the tRNAs or Usf1 (or

both) might be causal for the expression variation among this set of

amino acid metabolism related genes.

Another coherent set of eQTL could be observed for potassium

transporters in the short interval from Atp1a2 to Kcnj10 (174.2–

174.3 Mb). This locus has been associated with seizure suscepti-

bility (Szs1) [49] and the two potassium channel genes encoded

there – Kcnj9 and Kcnj10 – were proposed as primary candidates.

The MDP data revealed that nearly all potassium transporters in

our set map precisely to this locus - Kcnj9 and Kcnj10 as cis-eQTLs,

Kcnv and Kctd4 as trans-eQTLs. This underlines the importance of

the Szs1 locus for fine control of potassium ion homeostasis within

the hippocampus and CNS tissues in general.

Rgs7 might act in trans inside Qrr1
As opposed to many other candidate regulators in Qrr1, Rgs7

(regulator of G-protein signaling 7) has several target genes

mapping to its promoter (177.42–177.53 Mb) and not in its

transcribed region (Figure 5a). RGS proteins are important

regulators of G-protein mediated signal transduction. Rgs7 is

predominantly expressed in the brain and has been found to

shuttle between the cytoplasmic membrane and the nucleus, thus

playing a role in gene expression in response to external stimuli

[50]. Therefore, it is likely that Rgs7 influences the expression of

genes belonging to diverse functional categories. Although we

could not discern a single functional class of genes trans-regulated

by Rgs7, our data suggests that Rgs7 is a master regulator in this

region controlling other genes encoded in Qrr1 in trans (Table S1).

These genes have various functions and include Ndufs2 (a

mitochondrial NADH dehydrogenase), Wdr42a (a scaffolding

protein expressed in the brain) and Pex19 (a protein necessary

for early peroxisomal biogenesis). Besides being targets of eQTL

linking to Rgs7, Wdr42a and Pex19 also have strong local eQTL in

both BXD and MDP. The fact that some of the genes proposed as

candidate regulators in Qrr1 are simultaneously trans-regulated by

Rgs7 may suggest a complex, multi-layered regulatory landscape in

Qrr1 where Rgs7 could be involved in fine tuning of the main

transcriptional response mediated by those genes.

Conclusions
Integration of low- and high-resolution eQTL data is a feasible

strategy for computational fine mapping of causal genes. For a

given low-resolution locus, the availability of several strong signals

from a high-resolution eQTL dataset facilitates the refinement of a

causal locus to specific genes.

We found several factors that influence fine mapping when

using high-resolution eQTL data: the intensity of high-resolution

eQTL signals, the way eQTL intervals are defined and the

search/ranking scheme used and its specific parameters. Our

analysis of Qrr1 demonstrates that further integration of biological

data greatly improves the overall performance of the prediction

method.

Our work suggests, in accordance with previous analyses [25]

that the Qrr1 trans-band is not caused by just one master regulator,

but is due to several polymorphic genes that either independently

or in a concerted way affect the expression of numerous target

genes. Based on the additional power gained from our own data

and because of the higher resolution of the MDP data we could

identify 11 local QTL with very high confidence. The analysis of

functional enrichment in sub-regions of Qrr1 further corroborates

the conclusion that Qrr1 in fact consists of several trans-bands.

The MDP and BXD datasets are different in several respects.

Not only are the study populations different, but the experiments

were performed independently in two different labs. Because of

this, our examination of consistency implicitly assesses the

reproducibility of eQTL between labs. However, because the lab

effect is confounded with the genetic difference of the populations

we cannot distinguish these two effects. In addition, we used a

different eQTL mapping method that is more suitable for

mapping QTL in the MDP population [51]. We are currently

working on mapping methods that are equally suitable to low- and

high-density QTL data, though the results of our work show that a

significant overlap between eQTL sets can already be achieved

even if the mapping methods are not the same.

Bennett et al. [11] have recently published a study where they

measured QTL in different RI panels and MDP lines. This

certainly is the ideal situation, because the data obtained for the

different populations are more consistent if measured under

identical conditions in one lab. On the other hand, a very large

number of physiological, behavioral and molecular QTL has

already been measured for the BXD panel (see www.genenetwork.

org). Our analysis demonstrates that it is possible to combine these

existing data with newly obtained trait data from other populations

for fine-mapping the QTL. Integrating new and existing data

considerably improves the insight beyond analyzing either of the

two datasets alone.

Materials and Methods

Details about the eQTL datasets used in this study are listed in

Table 1. All gene expression data were obtained from hippocam-

pus samples using the same microarray platform (Affymetrix

Mouse Genome 430 2.0). All position data in this study are set to

the NCBI Mouse Genome Build 37.1 (UCSC mm9, July 2007).
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Ethics Statement
All animals received humane care according to the criteria

outlined in the ‘‘Guide for the Care and Use of Laboratory

Animals’’ prepared by the National Academy of Sciences and

published by the National Institutes of Health (NIH). All animal

experiments performed at GNF were approved by its Institutional

Animal Care and Use Committee (IACUC). GNF’s vivaria are

accredited by the Association for Assessment and Accreditation of

Laboratory Animal Care International (AAALAC), approval

number 001051.

MDP eQTL – Tissue Acquisition and Sample Preparation
Mice used in this study cover the following 28 inbred strains:

129S1/SvlmJ, A/J, AKR/J, BALB/cByJ, BTBR T+ tf/J, BUB/BnJ,

C3H/HeJ, C57BL/6J, C57BR/cdJ, C58/J, CBA/J, CE/J, DBA/2J,

FVB/NJ, I/LnJ, KK/HIJ, MA/MyJ, MRL/MpJ, NOD/LtJ, NON/

LtJ, NZO/HILtJ, NZW/LacJ, P/J, PL/J, RIIIS/J, SM/J, SWR/J

and WSB/EiJ. Hippocampus was collected from male mice, ages

8–11 weeks, between the hours of 9 AM and noon. The anterior

hippocampus was not collected. Coronal cuts were made at

approximately 1.8 and 3.8 mm posterior from Bregma. A spatula

was used to remove cortex and any tissue ventral to the

hippocampus. Samples were immediately placed on dry ice.

Frozen samples were homogenized in Trizol (Life Technologies),

and resulting total RNA was cleaned using RNeasy columns

(Qiagen). Total RNA from 3 mice were pooled and one

microarray was used for each pool. The Affymetrix One Cycle

kit was used to make cRNA from total RNA. Array hybridization,

washing, and scanning followed standard Affymetrix protocols.

eQTL Mapping
It has been reported that sequence polymorphisms in probe

regions may cause many false cis-eQTL, as they lead to differences

in hybridization, and not in gene expression [52]. A recent, high

quality set of SNPs has been used to correct BXD gene expression

data (about 7 million SNPs generated by sequencing C57BL/6J

and DBA/2J genotype strains, using SOLiD and Solexa short

sequence reads – R.Williams et al., unpublished data - www.

genenetwork.org). The M430 2.0 probes in the BXD eQTL

dataset containing one or more SNPs have been removed.

For the BXD panel, eQTL associations have been inferred

using Haley-Knott regression [53], which is equivalent to the

original publication of the BXD data [24].

MDP expression data have been corrected for SNPs in probe

regions using available data at dbSNP 126 (May 2006). MDP

eQTL mapping was performed using methods that have been

previously described [54]. Briefly, we use ANOVA to calculate the

strength of genetic associations between an input phenotype and

the ancestral haplotype structure (as inferred using a local window

of three adjacent SNP alleles across the genome). A weighted

bootstrap method was introduced to detect association peaks

conditional on the population structure in the MDP [21]. At each

genetic locus, the association score (Sa) was represented as the

negative log10-transformed p-value. HAM analysis was performed

for all differentially expressed genes across the 28 strains.

Expression phenotypes were in log scale.

eQTL Comparison Strategy
Since the MDP dataset has a higher density of informative

markers than the BXD dataset, there is not a simple 1:1

relationship between the markers. Hence, two comparison

schemes have been tested: exact and interval-based. The exact
scheme only uses markers that are common to the two datasets

(i.e. at common genomic positions, 65 bp). Thus, MDP markers

that are between two informative markers from the BXD cross are

ignored. The interval scheme integrates all markers of the

MDP study within some interval around the markers from the

BXD population. In this case we assign the MDP markers to the

closest BXD marker and compare the maximum MDP signal of

those markers to the respective BXD signal. For both schemes,

multiple common peaks within a 5 Mb window are only counted

once [21].

We determine the significance of two matching eQTL peaks

based on an empirical distribution of eQTL scores. First, we

discretized the range of scores for both the MDP and BXD data

(above the 99% quantile), which establishes a two-dimensional

grid of the two scoring schemes. Then, for each threshold

combination (i.e. each bin), a background distribution is

established using 104 random eQTL profile comparisons and

counting the number of matching eQTL.

Genomic Locations – Local and Distant eQTL
In order to identify local (cis-) eQTL and distant (trans-) eQTL

we mapped the probe sets (Affymetrix Mouse 430 2.0) to the

corresponding genomic locations (NCBI Mouse Genome Build

m37.1). Local eQTL have been defined as eQTL within 5 Mb of

the physical location of the gene itself [21,22]. Using shorter

intervals for defining local eQTL did not significantly change the

conclusions (not shown). For the study of Qrr1, a smaller threshold

(500 kb) has been used to define local eQTL.

To search for the presence of common co-localizing distant

eQTL (eQTL hotspots, or trans-bands), the entire genome was

divided into 2 Mb bins (1320 total bins) and the number of

significant distant eQTL (in common between the MDP and BXD

datasets) was counted in each bin.

eQTL Fine Mapping Assessment
We used independent, external gene annotations to test the

efficiency of our methods for fine mapping of loci to specific causal

genes. This approach is based on the assumption that genes whose

products participate in the same molecular pathway are also likely

to influence each other’s expression levels [55]. Hence, a candidate

source gene of some eQTL is assumed to be correct if both the

candidate and target gene are members of the same KEGG

pathway (KEGG release 49.0 [56]). We ran the eQTL fine

mapping for 3969 unique mouse genes being annotated as KEGG

pathway members.

Selection of Significant eQTL Intervals for the Fine
Mapping Analysis

For every marker mi within the low-resolution eQTL dataset

(BXD), we defined its associated eQTL interval as the genomic

region delimited by the flanking markers (mi21, mi+1). For assessing

the performance of MDP-based fine mapping, we decided to

restrict the analysis to intervals with strong association signals in

both the BXD and MDP datasets. Thus, we selected eQTL

intervals matching all of the following criteria:

1. BXD eQTL signal $99.99% quantile in BXD eQTL dataset,

genome-wide;

2. MDP eQTL signal $99.99% quantile in MDP eQTL dataset,

genome-wide;

3. Number of genes within the eQTL region .1;

4. Number of MDP (high resolution) eQTL signals .1;

5. The target gene is annotated as a member of at least one

KEGG pathway;

Low- and High-Resolution eQTL
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6. At least one gene from the selected eQTL interval is a member

of the same KEGG pathway.

The first two criteria ensure that the loci contain high BXD and

MDP signals. Using MDP data for fine mapping does not make

sense if criteria 3 and 4 are not fulfilled. The last two criteria

restrict the analysis to eQTL with sufficient prior knowledge. The

final selection included 105 eQTL intervals that confirmed with

the above criteria and hence could be used for subsequent analysis.

Scoring Candidate Genes
We reformulate the fine-mapping task as follows: Given a

genomic interval around a marker that is significant according to

the BXD data, the task is to rank the genes within this interval

based on the MDP data. We then evaluate the ranking based on

the known pathway memberships. We assigned a score to each

gene in the interval based on the MDP scores as follows:

N If there is at least one marker in the transcribed region of the

gene, use the maximum of those markers.

N If there is no marker in the transcribed region, use the

maximum score of the flanking markers. The genomic region

that is searched in this case extends symmetrically downstream

and upstream the transcribed region and is defined by a fixed

length in bp (specified by the parameter ‘ext’).

Subsequently, genes in each search interval were ranked based

on those MDP scores and the top ranking gene was selected as the

predicted causal gene. If this top-ranking gene is in a common

KEGG pathway with the target gene, the ranking is called a

‘success’. We then compute the fraction of correct predictions

among all N intervals assessed, SHR = Nsuccesses/N, where Nsuccesses is

the number of correct predictions.

This score is then compared to:

N the expected random success rate, which is the average

frequency of ‘‘true’’ causal genes in the N cases:

Srandom~

P
fi

N
,f ~

NTrueCausalGenes

NGenes

;

N the success rate Sclosest obtained by selecting the closest gene to

the low-resolution (BXD) marker.

Use of Genetic Distances to Narrow Locus Sizes
We used genetic distances from Mouse HS genetic map-Build

37 available at the Wellcome Trust Center for Human Genetics

(http://www.well.ox.ac.uk/mouse). Mapping of MDP known

markers to the HS genetic map provides 9,843 markers with

genetic distances. We then used this information to specify eQTL

intervals in terms of genetic distances (DcM) instead of base pairs,

in order to restrict interval sizes (and number of genes) associated

with each selected eQTL. When genetic distance was not available

for the interval under study, we assumed this parameter to vary

linearly with physical distance for small intra-marker regions

(typically few hundred kb). Hence, we retrieved cM value by

means of linear interpolation between the two closest markers with

known genetic distance.

Usf1 and Atf6 Over-expression Datasets
Plaisier et al. [44] studied overexpression of Usf1 in HEK293T

cells in vitro to ascertain the genes downstream of Usf1 (GEO

accession: GSE17300). CEL files from the repository were

processed as described in [44]. Differential expression between

Usf1 and empty vector control transfected cells was analyzed using

a Student’s t-test. Differentially expressed genes were selected at

different p-value cutoffs (0.1, 0.05, 0.001); p#0.05 was used for the

enrichment illustrated in Fig. 5c; additional cutoffs are reported in

Figure S4. Human genes were mapped to murine genes using the

available orthology data at Mouse Genome Informatics (MGI

4.32, December 2009; http://www.informatics.jax.org).

For Atf6, overexpression was studied in mouse heart tissue [46]

(GEO accession: GSE8311). We selected 607 genes exhibiting at

least 2-fold differential expression (p#0.001).

Analysis of Tissue Specificity in Gene Expression
The GNF Mouse GeneAtlas V3 was used as an independent

source of information about tissue-specific gene expression. In this

dataset, 78 tissues were taken from naı̈ve male C57BL6 mice for

hybridization to MOE 430-2 arrays [57] (https://biogps.gnf.org).

CNS-specific gene expression was evaluated by testing the

distribution of expression levels in the CNS (11 tissues) against

the distribution of expression levels across all tissues included in

GeneAtlas (two-sided Student’s t-test). Tissue-specific expression

levels were averaged in case of genes targeted by multiple

probesets.

Functional Enrichment Analysis
Enrichment in functional categories was evaluated using the

analytical tool DAVID 6.7 (http://david.abcc.ncifcrf.gov) [58].

Overrepresented functional terms were identified and statistical

significance of enrichment was calculated using a modified Fisher’s

Exact Test or EASE score [59].

Supporting Information

Table S1 Regulators (quantitative trait genes) for Qrr1 as

suggested by MDP mapping data.

Found at: doi:10.1371/journal.pone.0013920.s001 (0.05 MB

DOC)

Table S2 Functional enrichment analysis of genes that map to

Qrr1 in the BXD hippocampus data set.

Found at: doi:10.1371/journal.pone.0013920.s002 (0.02 MB

XLS)

Figure S1 Assessment of MDP-based candidate gene selection -

trans-eQTL only. For each of the selected loci a selected candidate

gene was considered as a true positive if it is part of a common

pathway with the target gene. The figure shows the fraction of loci

with correct selections; x-axis shows inclusion of successively more

eQTL intervals at decreasing MDP scores (between top 100 and

top 300 strongest signals). Black line: true positive rate (TPR) using

MDP signals. Blue line: TPR using the closest gene. Solid red line:

TPR using random gene selection (average across 100 random-

izations). Dotted red lines: average TPR for random gene selection

6 standard deviation. We also confirmed that genes being part of

the same pathway rank significantly higher when using the MDP

data for fine-mapping (analysis equivalent to Figure 3A). We

focused on the top 200 intervals without cis-eQTL. Candidate

genes from the same pathway were ranked among the top 50% in

87 cases and among the bottom 50% in 67 cases (46 cases not

ranked; difference is significant with p,10216, one-sided t-test).

Found at: doi:10.1371/journal.pone.0013920.s003 (0.00 MB

PDF)

Figure S2 Correlation between the strength of MDP eQTL

scores and their ability to correctly map causal genes. The eQTL

intervals are ordered according to decreasing MDP eQTL scores,

e.g. longer lists include lower scores.

Found at: doi:10.1371/journal.pone.0013920.s004 (0.00 MB

PDF)
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Figure S3 MDP-based candidate gene selection at different

DcM.

Found at: doi:10.1371/journal.pone.0013920.s005 (0.13 MB

PDF)

Figure S4 Enrichment of Usf1 targets along Qrr1 at different

thresholds in the BXD and MDP datasets, and different p-value

cutoffs for defining targets from the over-expression experiment.

A: lower p-value cutoff (0.1, 5839 targets); B: higher p-value cutoff

(0.01, 850 targets); C: lower BXD threshold (99.5% percentile, 285

genes selected); D: higher MDP threshold (99.9% percentile, 37

genes selected). E: Enrichment of Atf6 targets along Qrr1. Black

line: enrichment (-logp) as a function of the physical distance from

the transcription factor, i.e. the length of an exploratory interval

centred on Atf6. Red lines show results for randomized Atf6

targets (average across 100 randomizations 6 standard deviation).

Found at: doi:10.1371/journal.pone.0013920.s006 (0.39 MB

PDF)

Figure S5 Functional enrichment of target genes linking to

Qrr1. The average MDP eQTL score at each marker in Qrr1 is

reported for all genes of a specific class.

Found at: doi:10.1371/journal.pone.0013920.s007 (0.84 MB

PDF)
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