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Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the
development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping
provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited
polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism
(SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To
remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use
of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred
haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this
method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait
loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be
more easily identified and characterized as shown for adenylate cyclase 7.
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Introduction

The combined efforts of the public and private mouse
genome sequencing consortiums have yielded important
advances in understanding the structure and content of the
genome (Mural et al. 2002; Waterston et al. 2002). Identi-
fication of new genes from the sequence data and placement
of all genes, along with genetic markers, on a physical
assembly has greatly aided in the search for phenotypically
important genes in both quantitative trait loci (QTL) and
mutagenesis-based mapping. The sequencing of four differ-
ent strains of laboratory mice for the initial genome
assemblies also produced a catalog of natural sequence
variations that are present between these commonly used
strains. Other smaller scale resequencing efforts have
increased the breadth of this information by including
additional strains (Lindblad-Toh et al. 2000; Grupe et al.
2001; Wade et al. 2002; Wiltshire et al. 2003).

The utility of this sequence-variation data is 2-fold. First,
the single nucleotide polymorphisms (SNPs) identified by
these sequencing projects provide denser coverage marker
sets that are well suited for high-throughput genotyping
systems. Currently, these benefits have only been available for
crosses between the relatively few strains for which sub-
stantial polymorphism discovery has been undertaken.

Second, the distribution of SNPs between any two strains,
or more precisely, the lack of SNPs between two mouse
strains, indicates regions of their genomes that were inherited
from a common ancestor. Phenotypic differences that are
traditionally mapped in QTL studies are almost exclusively
due to loci inherited from different ancestral progenitors
rather than new mutations (Frazer et al. 2004). Thus, a

detailed knowledge of where common ancestral regions lie
between strain pairs would speed QTL mapping by elimi-
nation of shared regions from consideration as candidate loci
(Wade et al. 2002). Additionally, it has been proposed that the
actual haplotype structures marking these ancestral relation-
ships can be determined and that the relationship of
haplotype distribution among mouse strains and phenotypic
variation could be used to directly map the genetic controls
for the phenotypes (Grupe et al. 2001). However, three major
factors have seriously curtailed the implementation of in
silico mapping methods: a lack of the necessary SNP density
and distribution along the genome for more than just a few
strains; incomplete phenotype data for multiple strains, and
lastly, the appropriate analysis tools for making genotype–
phenotype associations. More recently uncertainties have also
been expressed concerning the level of data that will be
required to make in silico mapping a viable method. This is in
part due to the emerging complexity of the haplotype
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structure in mouse and also to such issues as how many
strains need to be phenotyped to be able to gain statistical
power for in silico mapping (Darvasi 2001; Frazer et al. 2004;
Yalcin et al. 2004).

To overcome the barriers to in silico mapping, 10,990 SNP
assays have been typed against 48 mouse strains in this study.
These assays provide an extensive polymorphic marker set
enabling expansion of traditional mapping efforts to other
strains. Wide-ranging phenotyping projects that have been
coordinated by The Jackson Laboratory (http://www.jax.org/
phenome) have collated multistrain phenotype data. We
demonstrate that when using these datasets, in combination
with new analysis methods, statistically significant associa-
tions between discrete genomic regions and biologically
important phenotypes can be identified. Confirmation of
these associations was obtained by comparison to data from
traditional QTL mapping methods.

Results

SNP assays were designed based on sequence data from the
Celera Mouse SNP Database and typed, in duplicate, against
the genomic DNA of 48 strains of mice, including all 40
Mouse Phenome Project priority strains (see list of strains in
Tables S1 and S2) (Bogue 2003). Twelve wild-derived inbred
strains were included in the set. Two strains, SPRET/EiJ and
SEG/Pas (Mus spretus), represent a different species of mouse
from the other lines tested. Not surprisingly, fewer genotypes
were obtained from these two because of the divergent
genomes (Tables S1 and S2) of the distinct species, which led
to a higher failure rate in the genotyping reactions. For the 36
non-wild-derived strains typed, 8,349 SNP assays produced at
least 90% of the possible allelic data.

Previously, sufficient polymorphic markers have not been
available for many strain–pair combinations. The develop-
ment of this SNP panel provides a resource of polymorphic
markers to enable traditional mapping projects between
almost any strain–pair combination of the 48 strains. In
mapping a phenotype, introduction of modifier genes can be
a confounding influence, and selection of more closely
related mapping partners can alleviate this problem. The
SNP density in this set is sufficient that mapping can now be
accomplished between strains that had previously been too
closely related for sufficient markers to be found. For
example, for C58L/J by C57BL/6J and C57BL/6J by C57BL/

10J comparisons, over 2,000 and 400 polymorphic markers,
respectively, are available. Although large gaps do exist in the
coverage of these strain–pair combinations, markers are
present on all chromosomes to allow for initial candidate
region identification (Figure 1). Details of all allele calls and
SNP assays are available in Dataset S1.
Just as in humans, a spectrum of phenotypic values can be

observed among the inbred strains of mice. SNPs that occur
between these strains may produce a specific functional
change in a gene leading to this phenotypic variation but are
more often simply markers for an ancestral haplotype. The
goal of in silico mapping is to identify which haplotype
patterns (genetic measure) track with the phenotypic out-
come with the idea that these haplotypes contain causative
mutations. For in silico mapping to be successful, a require-
ment is that the SNP data accurately represent this ancestral
relationship of the mice at the genomic level. At a gross level,
this was examined by comparing branches of the phylogenic
tree generated from this SNP dataset with the known
breeding histories of the strains used in this study (Beck et
al. 2000). An inspection of the C57-related family of mice,
derived from a tree built from the SNP data of all 48 strains
(Figure S1), recapitulates the family’s lineage in the phylo-
genic tree (Figure 2A).
At a more detailed level the specific genomic contributions

of mouse strains derived as hybrids of other common
laboratory strains can be estimated. For example, DBA/2J is
considered to have contributed approximately 16% of the
genomic content to the C57BLKS/J mouse (Naggert et al.
1995). Comparisons of C57BL/6J, the other founder strain of
C57BLKS/J, and DBA/2J-specific alleles to the SNP content of
C57BLKS/J clearly defines these large regions of DBA/2J
contribution as shown for Mus musculus Chromosome 9
(MMU9) (Figure 2B). Based on the SNP data, it can be
estimated that 20% of the C57BLKS/J genome came from a
DBA/2J origin, including almost all of MMUX. This type of
analysis also indicates that at least one additional strain,
possibly 129-like, contributed genomic content to C57BLKS/J
in regions where the allelic pattern matches neither DBA nor
C57BL/6J.
A lack of sufficient underlying SNP data to this point have

prevented the thorough development and testing of an
algorithm to carry out in silico mapping (Chesler et al.
2001; Darvasi 2001). Previously published methods were
severely limited by the lack of SNP density and strain

Figure 1. Visualization of the SNP Sets

Allows for Mapping in Crosses That Mini-

mize the Number of Potential Modifiers

When the distribution of the SNPs is
plotted out genome-wide, the expected
irregular clustering of SNPs mark regions
where heterozygosity was continuing to
segregate during the inbreeding of the
C57 family. Likewise, there are regions
that were successfully homozygosed be-
fore the split of C58/J from the rest of the
family members. In all five strain compar-
isons, no SNPs were found in the distal 25
Mb of MMU19.
DOI: 10.1371/journal.pbio.0020393.g001
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coverage leading to a method that utilized generalized
genetic distances and resulted in lack of resolution in the
analysis (Grupe et al. 2001; Smith et al. 2003). Based on the
data above, this SNP set provides sufficient spacing and
resolution to distinguish discrete ancestral patterns, allowing
for subsequent in silico analyses to treat the genetic measure
used in these calculations as categorical. Although the
number of SNPs used here still does not allow the precise
definition of haplotype blocks, the relatively even spacing of
the SNPs every 300 kb does allow for an inference of ancestral
relationships across 1-megabase (Mb) regions. For this reason,
a sliding window of three SNPs is used to infer haplotypes at
each locus. Strains showing the same pattern are grouped in
the same inferred haplotype, as a single category, and any
variations are considered to form distinct inferred haplo-
types. All of the strain-distribution patterns created by this
definition of inferred haplotype were compared across the
genome to determine their uniqueness. Replication of the

same strain-distribution pattern at multiple locations across
the genome, or ‘‘mirror loci,’’ would result in regions that are
all equally associated with the phenotype and produce false
positives. No occurrences of mirror loci were found outside
of a 5-Mb region of any three-SNP block.
With this in mind a logistic regression model followed by

analysis of deviance was used to determine the association
between a sliding window of three SNPs and phenotype
scores of 1 or 0 for the presence or absence of three
Mendelian traits: coat color traits of nonagouti and albino
and retinal degeneration. All of the phenotypes were
determined from phenotypic descriptions in The Jackson
Laboratory mouse database (http://jaxmice.jax.org/jaxmice-
cgi/jaxmicedb.cgi). Albino mice were excluded from the
mapping of nonagouti because the nature of the phenotype
prevents the ascertainment of agouti or nonagouti coat
colors. In each case, the appropriate locus for the gene
responsible for the particular trait was identified from this

Figure 2. Genome-Wide SNP Data Accurately Represent the Known Ancestries of the Genotyped Strains

(A) A tree, adapted from Beck et al. (2000), tracing the lineage of the C57 family of mice (upper tree) shows almost perfect correlation with a
phylogenic tree based solely on SNP data (lower tree). The only difference in the two trees is the location of C57BLKS/J, which splits from C57BL/
6J sooner in the phylogenic tree because of the genomic contributions of the non-C57 strain, DBA/2J. The maximum parsimony phylogenic tree
of the strain relatedness was built using the pseudoalignment of the 10,990 SNP alleles for 48 strains with the Phylip package, version 3.6b.
(B) The DBA/2J contribution to C57BLKS/J can be visualized in its allelic patterns. The region from 104 Mb to 109 Mb on MMU9 shows the same
SNP alleles for both C57BLKS/J and its other parental strain, C57BL/6J (a period represents identity with the C57BLKS/J allele). At 110 Mb, the
pattern switches and every C57BLKS/J allele matches the DBA/2J content through 120 Mb. SNP marker names are positioned above the alleles
with the first number representing the chromosome the marker is located on, the second number being the Mb position on the chromosome,
and the third number being an approximate location within the Mb.
DOI: 10.1371/journal.pbio.0020393.g002
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SNP collection with the most significant p-value (Figure 3A;
Kwon et al. 1987; Bowes et al. 1990; Bultman et al. 1992).
Interestingly, for in silico mapping of the nonagouti locus, a
highly significant score was also obtained for a locus on
MMU7 at 29.9 Mb. This is also the approximate location of
the dark locus, an unidentified gene that also influences coat
color (Silvers 1979).

The ability to properly identify causative genes for mono-
genic traits is a minimum requirement for a viable in silico
mapping method, but to serve its intended purpose it must be
able to point to controlling loci when multiple genes act in
concert to contribute to a phenotype. To examine a
quantitative trait, data from a two-bottle saccharin prefer-
ence test for 23 strains of mice were analyzed with the Fisher
permutation-based analysis of variance (ANOVA) statistical
model. Briefly, at each three-SNP window, a modified F-
statistic based on the true genotype–phenotype pairings is
calculated (detailed in Materials and Methods). The signifi-
cance of this test statistic is estimated by comparing to a
distribution of 1 million random bootstrap samples of
phenotypic values. A three-SNP window beginning with
marker 04.155.136 obtained the lowest p-value of the genome
scan (Figure 3B). This locus corresponds to the position of the
gene, Tas1r3, identified by traditional QTL methods as a
primary contributor to the variability of the sweet preference
quantitative trait (Bachmanov et al. 2001; Max et al. 2001)
Three other saccharin preference QTL were also found to
overlap significant associations from this mapping (Table 1).

After validation with both monogenic traits and a
quantitative trait, the same strategy was applied to map
quantitative trait loci for the control of plasma high-density
lipoprotein cholesterol (HDL) and gallstone development.
The average HDL values from 10-wk-old mice fed on a
normal chow diet were taken from the Mouse Phenome
Database (Paigen et al. 2002; Bogue 2003). Because of the
complexity of these traits, a conservative approach was used
for strain selection. Data used for only 23 of the most related
laboratory strains and two of the M. musculus domesticus strains
because if a strain is from a unique lineage and contains
unique haplotypes, it will not add any power to the analysis
and risks increasing the level of noise (see Materials and
Methods for a list of the 25 strains). Using a three-SNP
window to analyze the 25 strains, there were no mirror loci
present, and on average, 3.8 distinct inferred haplotypes were
found at each locus.

Where multiple loci may be expected to be found, as is the
case for multigenic traits, a significance threshold was
defined. To determine the false positive rate of each p-value,
a recently described method by Dudoit et al. (2004) was used.
The generalized family-wise error rate (gFWER) method uses
a bootstrap estimation of the null distribution to assign a
significance cutoff. In the case of the HDL phenotype, a
significance threshold associated with a false positive rate of

less than 0.005 (p-value = 0.000506; �log[p] = 3.2958) was
used (Figure S2). Nineteen three-SNP windows were identi-
fied as having significant association with the HDL pheno-
type, which collapsed into 11 distinct loci (Figure S3). To
gauge the reliability of the in silico predictions, the results
were compared to previously described QTL regions. Nine of
these 11 loci fell within one of the regions identified by
traditional two-strain crosses (Table 1). Of the two that were
not found to match previously identified QTL, the in silico
MMUX QTL would not be expected to be matched because
MMUX has been excluded from consideration in prior HDL
QTL work.
This same type of analysis was repeated for a phenotype

that scored the formation of gallstones in 25 strains of male
mice (Paigen et al. 2000). Eleven regions were produced that
exceeded the gFWER false positive cutoff (p-value =
0.000398;�log[p] = 3.400117), and seven of these regions fell
within the range of traditionally identified QTL for gallstone
formation or mucin accumulation, which is considered a
precursor to gallstone formation (Table 1; D. Q. Wang et al.
1997).
As well as identifying QTL, the inferred haplotype data

from this SNP set also can be used to assist the narrowing of
candidate regions, aiding in the selection of candidate genes.
An association for a region overlapping an HDL QTL
previously identified on MMU8 did not meet the stringent
statistical cutoff set for the in silico method (X. Wang and B.
Paigen 2002). The most significant p-values obtained for the
MMU8 QTL region were consistently found between 89–94
Mb. Sample sequencing of the region confirmed, at a slightly
higher resolution, the SNP pattern that generated the
association. This sequencing also replicated an inferred
haplotype break point in the BTBR strain that narrowed
the region to 88.52–90.88 Mb. A candidate gene within this 2-
Mb region, adenylate cyclase 7 (Adcy7), located at 89.55 Mb, is
expressed in the liver and adipose tissue (http://symatlas.
gnf.org) and functions by producing cyclic adenosine mono-
phosphate (Watson et al. 1994). Cyclic adenosine mono-
phosphate is known to be an important signaling component
in the pathway to lipolysis (Cammisotto and Bukowiecki
2002). Homologous regions containing the rat and human
ortholog of Adcy7 have also been identified as containing an
HDL QTL (Bottger et al. 1996; Mahaney et al. 2003; Pajukanta
et al. 2003).
Adcy7 was sequenced in strains representing the three

inferred haplotypes identified for this locus in the SNP
dataset. Twenty-eight SNPs were identified in the gene, three
of which produced amino acid changes. Nineteen of these
SNPs, including the three nonsynonymous changes, were
typed against all 48 strains of mice (Figure 4A). One of the
haplotypes showed a higher average HDL level than all the
others (77.5 mg/dlþ20.3 versus 67.2 mg/dlþ 24.3 and 57.9 mg/
dl þ 16.7). This haplotype also contained a SNP causing a

Figure 3. In Silico Mapping Method Correctly Identifies Coat Color, Retinal Degeneration, and Sweet Preference Loci from SNP Data

(A) Presence or absence of the retinal degeneration, albino, or agouti phenotypes was given a numerical value of 1 or 0 for use in the mapping
algorithm. In each case, the most significant p-value (indicated by an arrow) was obtained for the region that contains the gene known to produce
these phenotypes. A closer inspection of the retinal degeneration mapping shows that the maximum linkage region indicated by the algorithm
covered a 0.4-Mb region from 102.4 Mb to 102.8 Mb on MMU5.
(B) Tas1r3 is known to be a major control gene for the complex trait of preference for sweet tastes. Values for the sweet preference of 23 strains
of mice produced a highly significant association with the one Mb region of MMU4 that contains Tas1r3.
DOI: 10.1371/journal.pbio.0020393.g003
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C717Y change in exon 20. Among the 48 strains, the members
of this haplotype are the only ones with a replacement of this
cysteine, which is conserved in the rat, cow, and human
versions of the gene (Figure 4B), making it a good candidate
for being a gene that contributes to the variability of HDL
levels in the blood (Abiola et al. 2003).

Discussion

The SNP data here provide new resources for traditional
mapping projects and enable development of inbred strain
haplotype methods for QTL detection. The analyses pre-
sented here indicate that the inferred haplotype structures
derived from this dataset provide sufficient estimation of
genetic diversity/similarity to map Mendelian traits to within
1-Mb intervals. QTL can also be defined as inferred haplotype
loci of several megabases in size. The analysis for QTL
provides a rank order of significant phenotype/genotype
associations, and using the gFWER method of controlling for
multiple-testing error, the loci reported as statistically
significant are very likely to be biologically relevant. This
point is borne out by the high concordance between the in
silico QTL and the traditionally determined QTL (Table 1).
The traditionally determined HDL QTL identified in the
mouse covers 42% of the genome and are in concordance

with nine of ten in silico QTL—a significant result (p ,

0.0025). This excludes the MMUX in silico QTL since they
cannot be verified from current traditional QTL data. The
false positive cutoff employed here is very restrictive and
could be relaxed to find additional real associations, but the
chances of including false positives would then increase. For
the gallstones phenotype the concordance is not demon-
strated to the same level; however, the top-ranked loci still
show overlap with previously defined QTL. What about the
loci that do not show overlap; are they still real? From a
statistical analysis it is unlikely they are false positives. In
these results, 25 strains are simultaneously combined, unlike
standard QTL mapping using two-strain comparisons, and
some phenotype–genotype associations may occur that have
not been observed by classical methods. Contributions from
diverse strains that have not normally been used in F2 crosses
or available in RI lines can now be incorporated.
Even showing that this method does find significant

associations, the question arises about its general utility and
applicability. The methods of in silico mapping as described
here should be viewed as a complement to, and not a
substitute for, traditional methods for mapping QTL.
Although we have demonstrated a robust approach to in
silico mapping, it would certainly not be expected to find all

Figure 4. Analysis of Adcy7 Haplotypes Reveals Amino Acid Change Associated with HDL Phenotype

(A) Sequencing of Adcy7 in multiple strains revealed 28 SNPs distinguishing three distinct haplotype patterns. All strains were typed with markers
selected to represent the three haplotypes. The strain distribution pattern predicted by the SNP data and the sample sequencing for this region
was confirmed with NZB/BlNJ and BTBR Tþ tf/J, I/LnJ and MA/MyJ, and C3H/HeJ, C57BL6/J, and C57L/J, each separating into unique haplotypes.
(B) The SNP represented by marker 08.089.597 resulted in a change from a cysteine to a tyrosine in the resulting protein (asterisk). This cysteine
is conserved in orthologs of the gene in human, rat, and cow. It is also found at the beginning of a stretch of ten amino acids (indicated by black
line) predicted to be one of the protein’s ten transmembrane domains. Identical amino acids are black and conserved amino acid changes are
gray.
DOI: 10.1371/journal.pbio.0020393.g004
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QTL for a given phenotype. Major contributors to pheno-
typic variation will show up, but weaker contributors would
be expected to be lost because of the limited power of 25
strains. It would also be expected to miss QTL resulting from
recent strain-specific mutations or low-frequency haplotypes.
Traditional QTL methods will still be required to identify the
more subtle interactions, including those involving epistasis
and modifying genes.

However, these methods would provide a useful starting
point for a new phenotype that is being investigated, where
often the first step for any QTL analysis is a strain survey to
quantify the range of the phenotype. Additionally, if these
analyses are overlaid with the results from a traditional two-
strain QTL mapping, one of the major advantages to be
gained from this approach is that associative loci are defined
in terms of a few megabases instead of tens of centiMorgans.

The number and selection of strains and appropriate
phenotype are also important considerations. Here we have
limited our analysis of the complex traits, HDL and gall-
stones, to 25 strains—those that are best interrogated by this
SNP set. While it is true that more strains have the potential
to add greater statistical power to resolve QTL, this potential
is limited by our ability to accurately represent the ancestral
relationship of those additional strains. If we add more
strains, but cannot accurately infer haplotype structures in
those strains, we only add more noise to the analysis. The
ability to detect all possible haplotypes in the utilized strains
from the SNP data suffers from the availability of sequence
data, currently from only four strains of mice. Because the
source SNPs come from the sequencing of only four closely
related strains, this current set is biased toward interrogating
ancestry ofM. m. domesticus. To be successful, phenotypes must
have a low intrastrain variation but sufficient variance within
the strain set selected. This however, is not a requirement
restricted to in silico mapping.

The overall power of this method will only improve as the
biases and limitations of the SNP panel are addressed and
additional strains are genotyped and phenotyped. Unique
strains would become more useful if all possible SNPs are
known and the mapping is then done directly with the
causative polymorphism or at least with a large unbiased set
of SNPs. As resequencing of other mouse genomes progresses,
the ability to correctly infer the complete number and
structure of haplotypes will improve, and the number of QTL
regions reaching statistically significant levels will increase.

Recently, two similar studies of haplotype structures across
5-Mb regions were published, although they produced
differing conclusions on how their findings might affect in
silico mapping efforts (Frazer et al. 2004; Yalcin et al. 2004).
Yalcin et al. has suggested that the complex nature of mouse
haplotype structure and the small size of many haplotypes in
inbred strains will make in silico mapping methods untenable
and will preclude the mapping of any meaningful genotype–
phenotype association short of whole genome resequencing
(Yalcin et al. 2004). This assessment would presumably hold
true even for the well-defined Mendelian traits. The inferred
haplotypes from a three-SNP window spanning on average
900 kb would not be able to reflect ancestral relationships, so
the appropriate genotype–phenotype association could not
be made no matter the strength of the allele in determining
phenotype. Yet, clearly they can. The Frazer et al. (2004)
study, which utilized more strains and produced significantly

greater coverage of their 5-Mb region, estimates that the
average ancestral segment length among classical inbred
strains is in the order of 1.5 Mb in size, within the resolution
of this work. In fact, the Yalcin et al. (2004) data show similar
megabase-long ancestral relationships between strain pairs
(for example, 5 Mb of near identity between A/J and C3H/J).
This in silico approach concurs with the conclusions of Frazer
et al. (2004). Despite the complexities of haplotype structures,
the use of a large enough set of strains with a dense SNP map
does allow for significant and real associations to be found.
This is not to suggest that fragmented small haplotypes are

not common in the genome of the inbred mouse. This clearly
does mean that there will be regions of the genome that will
not be interrogated well by an in silico method. This
approach is still limited by the density of this SNP map and
can only be expected to visualize inferred haplotype patterns
of approximately 1 Mb in size, and therefore smaller
haplotype structures are hidden and potential phenotype–
genotype associations will be missed. Here future, larger SNP
sets that will allow more SNPs to infer haplotype will become
important. However, this is the best resolved whole genome
view of the diversity of the commonly used inbred strains to
date.
The algorithms employed here provide a starting point for

further development of in silico mapping. We have shown
that they can be used to identify Mendelian traits and
replicate classical QTL associations. Clearly, the next goals
are to validate some of the previously unreported associa-
tions, and this work is ongoing.

Materials and Methods

SNP selection and detection. SNPs for use in genotyping were
selected on a weighted basis from the Celera Mouse SNP Database
containing data from the DBA/2J, A/J, C57BL/6J, 129S1/SvImJ, and
129X1/SvJ strains. Sufficient SNPs were selected for coverage of at
least one SNP per 300 kb on average. The 129S1/SvImJ and 129X1/SvJ
strains were considered as the same strain when their alleles agreed;
preference was given first to SNPs where each allele of the SNP was
represented by two strains. This was done to favor selection of SNPs
representing ancestral inheritance, not recent strain-specific muta-
tions, and to favor real SNPs as opposed to errors in sequence
annotation. Additional selective value was incorporated based on
whether the SNP was in a gene, how many sequencing runs supported
the presence of the SNP, and the proximity of the SNP to previously
selected SNPs. Additional SNPs used to characterize the Tas1r3 locus
were gathered from sequence from multiple strains available in
GenBank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=nucleo-
tide&cmd=search&term=tas1r3). All physical positions presented in
the paper are from the Celera Mouse Genome Assembly R13.

Primers for PCR and single-base extension were designed by using
the SpectroDESIGNER software package (Sequenom, San Diego,
California, United States). Assay designs are available as Supporting
Information. All SNP assays were named for their position in the
genome in the following format: the chromosomal location, the Mb
position on the chromosome, and the kb position with a period
separating each number.

For SNP genotyping, genomic DNA from pedigreed mice (Mouse
DNA Resources, The Jackson Laboratory, Bar Harbor, Maine, United
States) was diluted to 10 ng/ll, and 1 ll of DNA was combined with
2.45 ll of water, 0.1ll of 25 mM dNTPs (Invitrogen, Carlsbad,
California, United States), 0.03ll of 5 units/ll HotStar Taq (Qiagen,
Valencia, California, United States), 0.625 ll of 10X HotStar PCR
buffer containing 15 mMMgCl2, 0.5ll PCR primers mixed together at
a concentration of 1.25 lM for multiplexed reactions, and 0.325 ll of
25 mM MgCl2. Reactions were heated at 95 8C for 15 min followed by
45 cycles at 95 8C for 20 s, 56 8C for 30 s, and 72 8C for 1 min and a
final incubation at 72 8C for 3 min. After PCR amplification,
remaining dNTPs were dephosphorylated by adding 1.5 ll of water,
0.17 ll of homogeneous mass extend reaction buffer (Sequenom), 0.3
units of shrimp alkaline phosphatase (Sequenom), and 0.03 ll of 10
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units/ll exonuclease (USB Corporation, Cleveland, Ohio, United
States). The reaction was placed at 37 8C for 20 min, and the enzyme
was deactivated by incubating at 85 8C for 15 min. After shrimp
alkaline phosphatase treatment, the genotyping reaction was com-
bined with 0.76 ll of water, 0.2 ll of 10X Termination mix
(Sequenom), 0.04 ll of 0.063 units/ll Thermosequenase (Sequenom),
and 1ll of 10 mM extension primer. The MassEXTEND reaction was
carried out at 94 8C for 2 min and then 99 cycles of 94 8C for 5 s, 52 8C
for 5 s, and 72 8C for 5 s The reaction mix was desalted by adding 3
mg of a cationic resin, SpectroCLEAN (Sequenom), and resuspended
in 30 ll of water. Completed genotyping reactions were spotted in
nanoliter volumes onto a matrix arrayed into 384 elements on a
silicon chip (Sequenom SpectroCHIP), and the allele-specific mass of
the extension product was determined by matrix-assisted laser
desorption ionization time-of-flight MS. Analysis of data was by
automated allele calling from the SpectroTYPER software. All SNP
data are available at NCBI dbSNP (http://www.ncbi.nih.gov/entrez/
query.fcgi?db=snp) and The Jackson Laboratory Mouse Phenome
Database (http://www.jax.org/phenome). Placement of the SNP data
across the genome and major and minor allele distributions can be
visualized using SNPview (http://snp.gnf.org).

Statistical modeling for in silico mapping. The use of a single
marker is restrictive in the sense that it only allows a representation
of the genome as diallelic. The use of windows of multiple markers
enables the visualization of more complex genomic relationships
between multiple strains. This more accurately models actual
haplotype patterns than does a binary approach. In determining
the size of the SNP window to use as a definition of inferred
haplotype for purposes of the algorithm, sizes of two, three, four, and
five SNPs were examined. A window of only two SNPs was still found
to be too limiting. Windows of three, four, and five SNPs produced
similar results, but as window size is increased biologically meaningful
patterns become fragmented, creating more single-strain inferred
haplotypes, resulting in an increase in noise. Singly represented
haplotypes can never be informative in this analysis because the
commonality of haplotypes is required to achieve significant
association with a phenotype. Three SNP windows were also analyzed
across the whole genome to identify mirror loci. This would be a
locus that has exactly the same strain distribution pattern across all
25 strains used in an in silico run. There were no mirror loci, or 1-off,
or 2-off mirror loci (with one or two strains not grouped identically)
that occurred outside of a 5-Mb interval.

Defining the genetic measure as a categorical unit necessitated the
use of an ANOVA-based model. The type of ANOVA to use was
determined by the characteristics of the phenotypic values.

The phenotypes studied here fell into two categories: binary or
continuous. The coat color phenotype was considered as binary,
where phenotypic values were set to 1 and 0. The HDL phenotype is
an example of a continuous phenotype since the phenotypic values
are measured on a continuous scale. Two different statistical methods
were employed based on this distinction.

When phenotypic values are binary, the appropriate statistical
approach involves first fitting a binomial generalized linear model to
the data. An analysis of deviance table is then computed for the fitted
model. The R language function glm with the parameter family set to
binomial was used. This was followed by an application of anova.glm
with the parameter test set to Chisq.

For continuous phenotypic values, a log transformation was
applied to reduce the effects of outliers in the phenotypic data.
Next, an F-statistic weighted for the genotypic diversity of the strains
within an inferred haplotype group was used. The weighted F-statistic
had the following form:

TS ¼
SSBG
dfBG
SSWG
dfWG

ð1Þ

where

SSBG ¼
X

g

wgngðlg � lTÞ2;

SSWG ¼
X

g

XxR

i¼1
wgðxgi � lgÞ2

ð2Þ

and

dfBG ¼ k� 1; dfWG ¼ N � k ð3Þ

where ng is the number of strains in a given inferred haplotype, lg

is the mean of phenotypic values in a given inferred haplotype , lT is
the mean of all phenotypic values, k is the number of inferred
haplotypes, N is the total number of data values, and wg is the weight
representing the genetic diversity of the inferred haplotype. The
genetic diversity ratio (wg) between two strains is the number of SNPs
genome-wide in which both strains have genetic information and
they disagree, divided by the total number of SNPs in which they both
have genetic information. The genetic diversity coefficient for an
inferred haplotype in the weighted F-statistic is the average wg
between all strain pairs contained in the inferred haplotype.

The weighted F-statistic calculated at each SNP window determines
if at least one of the inferred haplotypes has an average phenotypic
value significantly different from the other inferred haplotypes. To
assess the significance of the computed value, the null distribution of
the weighted F-statistic was simulated at each SNP window by taking a
million bootstrap samples of the phenotypic values. As in the
algorithm used for binary phenotypes, inferred haplotype patterns
present in only one strain were not included in the calculation
because they are not informative in elucidating shared ancestral
blocks. From this distribution of a million random F-statistics, 200
bootstrap samples of size 1 million were computed. For each
bootstrap sample, a p-value was computed by dividing the number
of random F-statistics larger than the true F-statistic by the total
number of random F-statistics (million). In this way 200 p-values were
collected. The vertical heights reported in the bar graphs (see Figure
S2) are the �log(p) transform of the median of these 200 p-values. A
95% confidence interval (CI) for the p-value at this window was also
calculated from this bootstrap distribution.

To estimate the overall false positive rate for this type of
calculation, calculating a significance threshold based on the
family-wise error rate (FWER) has been proposed (Churchill and
Doerge 1994). Others have noted that the traditional FWER
calculation is too strict in the context of multiple testing and leads
to a significant loss of power (Lander and Kruglyak 1995). Therefore,
we employed a recently developed method of bootstrap estimation of
common cutoffs based on the gFWER (Dudoit et al. 2004). Whereas
the FWER method reports significance, using the most conservative
criterion of only one false positive, the gFWER method controls for
multiple testing while allowing for an acceptable false positive rate (in
our case, a , 0.005).

The gFWER method to control for false positives as applied to in
silico mapping is briefly described as follows. A null reference
distribution was constructed using random bootstrap tests to
determine a significance cutoff. Ten thousand bootstrap samples of
phenotype values were randomly assigned to the true haplotype
structure. For each random bootstrap sample, the nonparametric
ANOVA approach outlined above was performed at each three-SNP
window, with one difference. Whereas the initial true calculation
reports the median of 200 bootstrap p-values, the gFWER method
requires an estimate of the ‘‘supremum’’ (least upper bound) of
expected values reported at each locus, so the most significant value is
reported from the 200 bootstrap p-values (following Procedure 3 in
Dudoit et al. 2004), ensuring a conservative false positive estimate.
For each bootstrap sample, the genome-wide �log(p-value) corre-
sponding to the (1� a) percentile was added to the null distribution
(as described in Procedure 5, Dudoit et al. 2004). Finally, after the
10,000 bootstraps are complete, the significance threshold is set as the
(1�a) percentile in the entire null reference distribution (computed
from our 10,000 randomly bootstrapped iterations). While this
threshold still represents a conservative estimate of the desired false
positive rate, the gFWER has significantly more power than the
traditional FWER calculation.

Using this method for calculation of false positives, it is not
necessary to specify the marginal distribution of the test statistic at
each window of SNPs. Estimations of false positives or power that
assume some parametric form of test statistic’s distribution are not
reliable in this context. This distribution can alter radically at each
SNP window. In this context, the statistical problem of calculating
quantities like discovery power (that is, ultimately the type I and type
II error) is further complicated. Nearly 11,000 hypothesis tests (one at
each three-SNP window) are conducted in a single run of the
algorithm. Therefore, equations that currently exist for the estima-
tion of power for QTL mapping by traditional methods cannot be
applied here because they assume that the test statistic has some
previously defined parametric form. Code for the above described
algorithms is available upon request.

For calculation of the significance of the number of in silico QTL
that overlapped with previously identified QTL for the HDL
phenotype, a binomial distribution was used
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pðxÞ ¼ ð n
x
Þpxqn�x ð4Þ

given p = probability of success of 0.42 (overlap with HDL QTL in
previous literature).

Therefore q = probability of failure; the 0.0025 result is the
probability of at least nine successes in ten trials. Only ten loci could
be assessed for this result as no information is available for
traditional HDL QTL present on the X chromosome.

For the mapping of the retinal degeneration traits, 37 strains were
used. This represented all of the strains for which information existed
in The Jackson Laboratory database minus the most divergent wild-
derived strains for which inference of haplotype would be expected
to be most inaccurate. These strains were A/J, AKR/J, BALB/cByJ,
BUB/BnJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J, C57BR/cdJ, C57
l/J, C58/J, CBA/J, CE/J, DBA/1J, DBA/2J, FVB/NJ, I/LnJ, KK/HlJ, LG/J, LP/
J, MA/MyJ, NOD/LtJ, NON/LtJ, NZB/BlNJ, NZW/LacJ, PERA/EiJ, PL/J,
RIIIS/J, SEA/GnJ, SJL/J, SM/J, ST/bJ, SWR/J, WSB/EiJ, ZALENDE/EiJ,
129S1/SvImJ, and 129X1/SvJ. Because of the added complexity of the
coat color traits, mapping was restricted to the 25 most related strains
for which coat color phenotype could clearly be determined. For the
albino analysis, 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/
10J, C57BL/6J, C57BLKS/J, C57BR/cdJ, C57 l/J, C58/J, CBA/J, DBA/1J,
DBA/2J, I/LnJ, LP/J, MA/MyJ, NZB/BlNJ, NZW/LacJ, PERA/EiJ, PL/J,
SEA/GnJ, SM/J, WSB/EiJ, and ZALENDE/EiJ strains were used. For the
nonagouti mapping, the same strain set as the albino mapping was
used except for the mice presenting the albino phenotype. The
strains were 129S1/SvImJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J,
C57BR/cdJ, C57 l/J, C58/J, CBA/J, DBA/1J, DBA/2J, I/LnJ, LP/J, NZB/
BlNJ, PERA/EiJ, SEA/GnJ, SM/J, WSB/EiJ, and ZALENDE/EiJ. Any
mouse showing an agouti coat color was considered to be agouti for
this analysis regardless of genotype at the agouti locus. Only limited
phenotype data were available for saccharin preference, so again all
strains with available data except the most divergent wild-derived
strains for which inference of haplotype would be expected to be
most inaccurate were used. These strains were A/J, AKR/J, BALB/cByJ,
BUB/BnJ, C3H/HeJ, C57BL/6J, C57 L/J, CBA/J, CE/J, DBA/2J, FVB/NJ, I/
LnJ, KK/HlJ, LP/J, NOD/LtJ, NZB/BlNJ, PL/J, RIIIS/J, SEA/GnJ, SJL/J,
SM/J, ST/bJ, and SWR/J. For the mapping of the other complex traits,
only the 25 strains with the closest ancestral relationship were used.
These strains were 129S1/SvImJ, A/J, AKR/J, BALB/cByJ, BTBR Tþ tf/J,
C3H/HeJ, C57BL/10J, C57BL/6J, C57BLKS/J, C57BR/cdJ, C57 l/J, C58/J,
CBA/J, DBA/1J, DBA/2J, I/LnJ, LP/J, MA/MyJ, NZB/BlNJ, NZW/LacJ,
PERA/EiJ, PL/J, SEA/GnJ, SM/J, and WSB/EiJ.

Supporting Information

Dataset S1. Complete Allele Call and Assay List

Found at DOI: 10.1371/journal.pbio.0020393.sd001 (16.1 MB XLS).

Figure S1. Phylogenic Tree of 48 Strains Generated from SNP Dataset

Ancestral relationships between strains can be seen within clusters of
the tree such as the fact that BALB/cByJ is a progenitor strain to SEA/
GnJ. The bias of the SNP set can also be viewed by the exaggerated
distance between the C57 and 129 clusters and the DBA and A/J
cluster. The wild-derived strains make up the outermost cluster, but

the threeM. m. domesticus strains show a much closer relationship than
the other wild-derived strains to the common laboratory strains.

Found at DOI: 10.1371/journal.pbio.0020393.sg001 (2.2 MB EPS).

Figure S2. Duplicate In Silico Genome Scans for the HDL Phenotype

The log p-value at each three-SNP window was calculated and plotted
along the x-axis. Because any log p-value below 3 will not reach
significance, calculations are halted at any locus once obtaining a log
p-value of 3 becomes impossible in order to increase computational
throughput. As such all log p-values below 3 are reported at 3. The
false positive cutoff established by the gFWER calculation is indicated
by a horizontal red line. Every quantitative trait was run twice
through the algorithm to ensure consistency of results.

Found at DOI: 10.1371/journal.pbio.0020393.sg002 (5.8 MB EPS).

Figure S3. Distribution of log p-Values from gFWER Calculation of
Significance for HDL In Silico Analysis

To estimate an appropriate false positive cutoff, 10,000 genome scans
are conducted on randomized datasets and the 99.5 percentile log p-
value is reported from each run. The significance cutoff is indicated
by the vertical red line.

Found at DOI: 10.1371/journal.pbio.0020393.sg003 (3.1 MB EPS).

Table S1. Frequency of Polymorphic Alleles between Strain Pairs

Found at DOI: 10.1371/journal.pbio.0020393.st001 (44 KB XLS).

Table S2. Total Number of SNP Alleles between Strain Pairs

Found at DOI: 10.1371/journal.pbio.0020393.st002 (34 KB XLS).

Accession Numbers

The Mouse Phenome Database (http://www.jax.org/phenome) acces-
sion numbers for the phenomes discussed in this paper are MPD:29
and MPD:99.
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