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An exhaustive ring-based algorithm, HierS, has been developed in order to provide an intuitive
approach to compound clustering for analyzing high-throughput screening results. The recursive
algorithm rapidly identifies all possible ring-delimited substructures within a set of compounds.
Molecules are grouped by shared ring substructures (scaffolds) so that common scaffolds obtain
higher membership. Once all of the scaffolds for a set of compounds are identified, the
hierarchical structural relationships between the scaffold structures are established. The
complex network of hierarchical relationships is then utilized to navigate compounds in a
structurally directed fashion. When the scaffold hierarchy is traversed, over-represented
structural features can be rapidly identified so that excess compounds that contain them can
be removed without significantly impacting the structural diversity landscape of the compound
set. Furthermore, the removed compounds can provide the opportunity to follow-up on active
compounds that had previously been discarded because of practical limitations on follow-up
capacity. A Web-based interface has been developed that incorporates this algorithm in order
to allow for an interactive analysis. In addition, biological data are coupled to scaffolds by the
inclusion of activity histograms, which indicate how the compounds in each scaffold class
performed in previous high-throughput screening campaigns.

Introduction
The recognition and classification of shared chemical

features present in the large and diverse sets of com-
pounds identified as hits by high-throughput screening
(HTS) are important and difficult tasks. Effective fea-
ture identification facilitates the decisions that affect
the allocation of resources throughout the lead discovery
process. To this end, a number of approaches have been
developed to structurally classify compound hit lists
from HTS campaigns.1-4 The identification of structur-
ally related biologically active compounds enables sci-
entists to focus follow-up efforts on representatives from
each set, which can maximize the number of candidate
scaffolds classes available for optimization and minimize
the chances that a potentially desirable scaffold is over-
looked. In addition, effective compound clustering can
also be used to identify biologically promiscuous chemi-
cal features or experimental artifacts such as fluorescent
chemical groups or reactive impurities from combina-
torial chemistry.

Judging the relative performance of two chemical
clustering methods presents significant challenges be-
cause the criteria for evaluation are context-dependent
and often subjective. Results are ultimately judged by
how well the compounds chosen for follow-up experi-
ments perform throughout the lead discovery process.
Experience has shown that medicinal chemists prefer
clustering methods whose results are readily interpret-
able and simple to explain. Therefore, the utility of a
clustering method is measured, at least in part, by how
well its results agree with chemical intuition. Clustering
methods often use abstract molecular representations,
such as molecular fingerprints,5,6 which reduce chemical
structures to a bit string of descriptors. However, these
types of approaches can result in chemists spending

more time trying to understand why compounds were
clustered in a particular way rather than using the
clustering data to identify and understand molecular
patterns in their data. Unfortunately, intuitive chemical
concepts7 may be extremely difficult to implement or
computationally intensive. Conversely, programmati-
cally amenable concepts, such as clustering methods
that utilize molecular fingerprints, are not as useful for
the conceptual understanding of clustering data.

In this paper, we present the HierS package, which
employs a fast and straightforward algorithm for clus-
tering compounds by their explicit topological chemical
graphs and a Web-based user interface that allows for
the visualization and navigation of clustering results.
More specifically, HierS employs an unsupervised al-
gorithm that constructs hierarchical relationships be-
tween ring features. The ring system “scaffolds” that
are generated provide a highly relevant means by which
to visualize chemical classes because ring-based link-
ages are central structural features in most drug
molecules. This was shown by Lewell et al.,8 who
recently noted that of the 10 000 development com-
pounds in PJB’s Pharmaprojects,9 96% of the com-
pounds contain rings. Of those, 56% of the molecular
weight is accounted for by atoms in rings.

The HierS algorithm is related to other applications
that have been developed to group compound data found
to be active in HTS experiments. The method presented
by Roberts et al. differs from the HierS algorithm in
that it uses a predefined hierarchy of over 27 000
chemical features to classify compounds and so may not
be optimally adapted for novel structural motifs.1 Al-
ternatively, the algorithm used by Tamura et al. identi-
fies maximum common substructures that appear to be
significant in conferring activity to a group of molecules,
which leads to a flat categorization as opposed to a
navigable hierarchy.3 The algorithm presented by Miller
identifies ring-system scaffolds consisting of two to four
rings, which are then used to build a predictive recur-
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sive partitioning model that consists of a statistically
rather than structurally determined hierarchy.4 HierS
also differs from all three programs in that it employs
a Web-based user interface.

At later stages of the lead discovery process the large
hit lists produced by HTS experiments can burden
biologists with large numbers of compounds for follow-
up experiments. Because the goal of HTS is to produce
candidate molecular scaffolds for lead optimization, it
is often unnecessary and inefficient to perform follow-
up experiments on molecules whose scaffold structure
is already well represented in the group of hits. Also,
practical considerations may limit the number of com-
pounds that can be used in follow-up experiments. The
efficiency of the lead discovery process can be improved
by identifying compounds in scaffold classes that are
over-represented or deemed to be undesirable by me-
dicinal chemists. However, automatic flagging of com-
pounds with problematic chemistry provides a signifi-
cant challenge because the judgment of the chemists can
vary from project to project.7 Considerations for ad-
vancement of compounds through the drug discovery
pipeline include the biology and value of the target,
existing intellectual property, existing preliminary struc-
ture-activity relationships (SAR), and the number of
molecules considered to have good chemistry potential
that were identified as hits in a given screen. To help
facilitate the compound selection process, HierS was
designed to identify significant structural features and
to couple them to historical biological activity, which
allows biologists and medicinal chemists to rapidly filter
through hit lists consisting of thousands of compounds
in order to identify patterns in their data.

Methods
Scaffold Building Algorithm. The ring-based struc-

tural analysis procedure described here is based on
previously developed concepts.10,11 Molecules are com-
posed of three components: ring systems (ring), side
chain bonds and atoms (chain), and linking bonds and
atoms (linker). Atoms that are external to a ring but
are bonded to a ring atom with a bond order greater
than 1 are considered to be part of the ring system
because they modify the nature of the ring. For the
special case where a molecule does not contain a ring,
chain bonds and atoms are trimmed until a double or
triple bond is encountered. Atoms that are double-
bonded to linker atoms are also considered to be part
of the linker because they can modify the nature of the
linker (e.g., the carbonyl in a peptide linkage signifi-
cantly increases the rotational barrier of the C-N bond).

The set of basis scaffolds for a given molecule is
defined as the structures that result from the removal
of all linkers and chains. In other words, the basis
scaffolds for a molecule are the set of all unique ring
systems in the molecule, where a ring system is defined
as one or more rings that share an internal bond. Ring
systems consisting of a single benzene ring are not
included in the set of basis scaffolds because they are
too ubiquitous to be considered a discriminating feature.
The superscaffold for a molecule is determined by
deleting only the chains. In the special case where a
molecule consists of zero or one ring system, the basis
scaffold is the superscaffold. Figure 1A shows the p38
MAP kinase inhibitor BIRB 796,12 along with its basis

scaffolds (Figure 1B) and superscaffold (Figure 1C).
Generally, the basis and superscaffolds by themselves
do not sample chemical space at sufficient granularity
to be useful for clustering compounds. Therefore, for
finding structural patterns in a set of molecules, a
number of intermediate scaffolds are necessary to
identify shared significant features within the set.

A recursive algorithm is used to elucidate all candi-
date scaffold structures including those derived from
exhaustive combinations of the basis scaffolds. The
process begins by trimming all chains to reveal the
superscaffold (Figure 1C). If the scaffold is novel, it is
added to the list of scaffolds. Next, HierS identifies all
basis scaffolds contained in the superscaffold. If the
number of basis scaffolds is less than or equal to 1,
HierS continues to the next scaffold candidate because
no smaller scaffolds exist for the fragment being pro-
cessed. If the number of basis scaffolds is greater than
1, HierS generates new compound fragments by deleting
each ring system present in the scaffold being precessed.
Then the resulting fragments are used as input for the
first step and HierS continues looping until all possible
ring combinations have been identified. In other words,
HierS recursively removes each ring system from the
superscaffold to generate fragments that contain all
possible ring system combinations. Finally, the process
is completed by adding the compound to the list of
member compounds for each scaffold. Figure 1D shows
the scaffolds consisting of all two-ring system combina-
tions, and Figure 1E shows the scaffolds consisting of
all possible three-ring system combinations.

After all the distinct basis and multiring system scaf-
folds for each molecule in the input list have been iden-
tified and added to the scaffold list, hierarchical struc-
tural relationships between the scaffold classes are es-
tablished. Scaffolds that contain another scaffold as a
substructure are said to be “derived” from that scaffold.
To build the scaffold hierarchy, a superstructure search
against all other scaffolds in the list is performed for
each scaffold. If a target scaffold is found to be a sub-
structure of the query scaffold, the query scaffold is ad-
ded to the list of scaffolds that are derived from the tar-
get scaffold. In this way, all possible hierarchical rela-
tionships between scaffolds are identified. Figure 2
shows an example of the hierarchical relationships be-
tween the scaffolds of BIRB 796. Scaffolds that are lower
in the hierarchy in Figure 2 are derived from scaffolds
that are higher in the hierarchy as shown by the con-
necting arrows in Figure 2. Establishing a structural
hierarchy in this fashion builds a framework for navi-
gating the chemical features of a set of compounds in a
structurally directed manner. Scaffolds are navigated
from small general features to larger features, which
are composed of various combinations of the smaller ele-
ments. Figure 3 shows the data flow diagram for both
the scaffold identification and hierarchy building pro-
cesses.

Once all scaffolds are identified and their hierarchical
relationships are established, HierS can rapidly traverse
the network of structural connections to determine
scaffold class membership. That is, for a fixed set of
input compounds, cluster membership is determined by
inspecting the connections between scaffolds along the
hierarchy. A compound belongs to all scaffold classes
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that are substructures of it, which means that a given
compound can belong to several scaffold classes. More-
over, if a compound belongs to a given scaffold class,
then it must also belong to all the scaffold classes from
which that scaffold was derived. If a scaffold has only a
single member compound and its member compound is
a member of one or more other scaffold classes, the
scaffold is considered to be “redundant” and is removed
from the list of scaffolds. Such scaffolds serve to increase
the complexity of the scaffold network but provide no
informational value to the overall set of scaffolds.

From Figures 1 and 2, it appears that the effect of
scaffold identification and hierarchy building adds un-
necessary complexity rather than simplifying structural
analysis. This, of course, is the exact opposite of the
desired outcome of a clustering analysis. While the
number of unique scaffolds for a given set of compounds
is often many times greater than the number of initial
compounds, a significant portion of the scaffold struc-
tures are discarded because they are redundant. Fur-
thermore, commonly occurring scaffold structures will

gain significant membership, which highlights their
importance. Also, this hierarchical complexity is hidden
behind a simple “drill-down”, which provides an intui-
tive and organized method for inspecting the scaffold
landscape. The distribution of scaffold membership
varies as a function of structural diversity of the input
compound set. In addition, the number of distinct
scaffolds is a function of the number of distinct ring
systems and the linkers that connect them.

Average Pairwise Tanimoto (APT). While the
scaffolds built by HierS provide an intuitive method for
organizing diverse compound sets by shared topological
features, they do not provide a means for assessing the
overall structural similarity between the compounds in
a given scaffold class. In other words, the scaffolds
describe localized topological features that are shared
in a set of compounds while the remaining features in
the molecules are ignored. This is a significant issue
given that a compound can have membership in a
number of scaffold classes, which can lead to an arbi-
trary decision as to which scaffold or scaffolds provide

Figure 1. Scaffold structures for the p38 MAP kinase inhibitor BIRB 796:12 (A) BIRB 796; (B) basis scaffold structures; (C)
superscaffold structure; (D) all two ring system scaffolds; (E) all three ring system scaffolds.
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the “best” overall representation of the compound set.
To remedy this, an average pairwise Tanimoto coef-
ficient (APT) is computed for each scaffold set using
molecular fingerprints computed by JChem,13 which are
closely related to Daylight fingerprints.14 The APT for
a scaffold is determined by summing the computed
Tanimoto coefficients15 between each pair of compounds
in a scaffold group and dividing by the number of pairs
of compounds in the group as shown in eq 1:

where n is the total number of member compounds in
scaffold i, Nj is the number of “on” bits in compound j,
Nk is the number of “on” bits in compound k, and Njk is
the number of “on” bits in common between compounds
j and k. The APT provides a convenient means for
approximating overall topological similarity because

many chemists are already familiar with the concept of
a Tanimoto coefficient. In addition, it is a simple scalar
metric by which scaffolds can be filtered and ranked.

The APT effectively provides a summary of how
closely related the overall topological structures of the
compounds in a given scaffold class are to each other.
For example, if a given scaffold is small (e.g., a single
pyrimidine), the compounds within that class may be
quite diverse given that the scaffold accounts for a
relatively small portion of each of the molecules in that
scaffold group (assuming the compounds in the group
are druglike in size). As a result, the APT coefficient
for that scaffold class will likely be small. A low APT
coefficient may also result if a scaffold class contains
other more tightly clustered scaffold classes that are
further down the structural hierarchy. In general, the
APT increases as the scaffold size increases because
larger scaffolds represent a higher proportion of the
structural features of the molecules in that scaffold set.

Figure 2. Hierarchy of scaffolds for the p38 MAP kinase inhibitor BIRB 796.12

APTi )
1

n(n - 1)
∑
j*k

n Njk

Nj + Nk - Njk

(1)
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As a result, APT values can be expected to increase as
one proceeds down a given branch in the scaffold
hierarchy. Nevertheless, APT values can be a useful
metric for comparing scaffold classes at similar levels
in the hierarchy in terms of the relatedness of their
member compounds.

Automated Identification of Over-Represented
Scaffolds. In addition to providing a simple method for
approximating the overall topological similarity between
compounds in a given scaffold class, the APT coefficient
can also be used as a metric to gauge scaffold over-
representation in a set of compounds. To identify over-
represented scaffolds, HierS first builds a list of all
scaffolds that exceed a user-defined APT criterion (e.g.,
0.80). Next, HierS sorts the list by ascending molecular
weight and then proceeds down the list and inspects
each scaffold to see if it is derived from a scaffold that
precedes it in the list. Any scaffold in the list of over-
represented scaffolds that is found to be derived from a
higher ranking (i.e., lower molecular weight) scaffold is
removed because all of the compounds that have mem-
bership in such scaffolds are already accounted for by
the higher ranking scaffold. In other words, the com-
pounds that are members of a scaffold that is derived
from an over-represented scaffold are already implicitly
accounted for by the scaffold from which it is derived.
Therefore, the derived scaffold can be removed from the
list of over-represented scaffolds because it is redundant.
The final list of scaffolds can be used as query structures
to investigate scaffold enrichment in a given screen. Or
compounds can be selected for removal from over-
represented scaffold classes in order to reduce the size
of a compound set while minimizing the loss of chemical
diversity, as discussed below.

Implementation. This HierS algorithm has been im-
plemented using version 1.4 of the Java language.16 Pro-

grammatic metaphors for chemical entities such as at-
oms, bonds, and molecules are provided by version 2.2.1
of the JChem package from ChemAxon.13 In addition,
the atom by atom matching functionality implemented
by JChem is used for both the scaffold and hierarchy
building sections of the algorithm. The performance of
the hierarchy building process is improved by several
orders of magnitude by utilizing molecular fingerprint
matching. HierS computes and caches 1024-bit finger-
prints as needed by using the JChem fingerprinter.
Because of this optimization, the hierarchy building pro-
cess scales linearly to tens of thousands of input com-
pounds. For a set of about 2000 compounds, the process
of identifying all the scaffolds and building the hierarchy
takes about 6 min on a 2.5 GHz Xeon processor. Because
HierS is implemented as a Web application, it is
immediately available on all networked computers.

HierS also makes use of three open source compo-
nents. The Apache Jakarta Tomcat17 (version 5.0)
servlet container and the Struts18 Model View Control-
ler package (version 1.1) provide the Web application
framework. In addition, the JFreeChart19 package (ver-
sion 0.9.16) was used to generate chart images. HierS
is available for downloading at http://www.gnf.org/
publications/hiers/.

Results and Discussion
Test Data Preparation. To illustrate the utility of

the application, we use the September 2003 release of
the Developmental Therapeutics Program (DTP) Hu-
man Tumor Cell Line Screen set from the National
Cancer Institute (NCI) and National Institutes of Health
(NIH).20 The 42 000 compounds in this set were first
structurally standardized, and salts were removed. In
addition, compounds with invalid structures, compounds
containing metals, and compounds with a molecular

Figure 3. Flow diagram for identifying all scaffolds and for building the hierarchical structural relationships between the scaffolds.
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weight greater than 800 Da were removed. About 32 000
compounds remained after filtering.

Other compound sets used include the 2003.2 edition
of the World Drug Index (WDI), an in-house-developed
combinatorial compound library (CMB), a vendor com-

pound collection (VEN), and the portion Genomics
Institute of the Novartis Research Foundation (GNF)
compound collection used for high-throughput screening
(GNF). These compound sets were processed and filtered
in a fashion similar to the NCI compounds.

Scaffold Accumulation. Figure 4 displays how dis-
tinct scaffolds accumulate as compounds are selected
at random from the five different compound collections
(NCI, WDI, CMB, VEN, and GNF). From each set of
30 000 input compounds (which were chosen at random
from their respective sources), groups of 1000 com-
pounds were selected at random and their scaffolds were
computed. The list of scaffolds from the new set of com-
pounds was then compared with the existing set, and
the novel scaffolds were added to the existing list. In
Figure 4A, the total unique basis scaffold count is plot-
ted as a function of the number of compounds for each
of the five sets. From Figure 4A, it is apparent that the
NCI and WDI sets accumulate unique basis scaffolds
much more quickly than the other three sets. After all
compounds are sampled, they have accumulated about
3000 and 2600 basis scaffolds, respectively. This is be-
cause the compounds in the WDI and NCI sets tend to
be composed of fewer large ring systems (e.g., natural
products) rather than a number of small ring systems.
In contrast, the CMB set is quickly saturated at 21 un-
ique basis scaffolds in the first set of 1000 compounds.
This is, of course, because the CMB compound set is a
combinatorial library.

Figure 4B shows the accumulation of all scaffolds (i.e.,
basis, super, and all intermediate scaffolds) from each
of the five compound sets. Unlike Figure 4A, the GNF
compound set accumulates the most unique scaffolds
(about 14 000), despite the fact that it accumulated far
fewer basis scaffolds than the NCI and WDI sets.
Although the GNF set has fewer basis scaffolds, it has

Figure 4. Accumulation of distinct scaffolds as a function of
compounds selected at random in groups of 1000: (A) ac-
cumulation of basis scaffolds; (B) accumulation of all scaffolds
(basis, super, and all intermediate scaffolds).

Figure 5. Percentage of compounds with confirmed activity in over-represented scaffold classes in five HTS campaigns carried
out at GNF. Targets 1-3 correspond to biochemical target-based inhibition screens, and cells 1 and 2 refer to cellular antagonist
screens.
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a greater diversity of linkers than the other sets, which
results in the greatest number of total unique scaffolds.
Another interesting observation is that, despite having
only 21 unique basis scaffolds, the CMB set still
produced about 6500 unique scaffold structures from its
30 000 input compounds. In addition, the accumulation
of scaffolds in the GNF set shown in Figure 4B presents
an upper limit to what a set of HTS hits would produce.
A successful HTS campaign would be expected to select
structurally related compounds from the screening set,
which would lower the number of total unique scaffolds
in the set of “hits”. Previous experience has shown that
a typical HTS campaign would be expected to select
about two-thirds of the number of scaffolds that would
be produced by a random selection of the equivalent
number of compounds from the GNF screening set.

Automated Identification of Over-Represented
Scaffold Classes in HTS Data. Often, compounds
identified as hits in HTS campaigns contain groups of
molecules that share significant structural similarity.
Ideally, this is due to a common structural feature that
confers activity against the particular target being
screened. However, this may also be due to undesirable
effects, such as aggregation21 or fluorescent chemical
groups. Regardless, at the early stages of lead discovery,
it is more beneficial to represent the maximum number
of putatively active scaffolds than it is to have many
compounds that represent only a few scaffold classes.
This is especially important when deciding how to
allocate resources for compound purification, analytical
analysis, resynthesis, or reordering of larger quantities
of compounds. Identifying over-represented scaffold

classes can be a tedious and error-prone process. To
remedy this, HierS provides an algorithm for identifying
and marking compounds in over-represented scaffold
classes, as described in Methods.

Figure 5 illustrates the percentage of compounds that
would be removed from actual HTS compound hit lists
by the automated marking functionality in HierS using
three APT thresholds for selecting over-representation.
The thresholds Loose, Medium, and Strict correspond
to 0.75, 0.80, and 0.85, respectively. These values were
chosen by experience and by considering the work of
Martin et al., who studied the relationship between
Tanimoto similarity and biological similarity.22 The
compound lists were taken from five representative lead
discovery projects (three biochemical inhibition and two
cell-based antagonist assays) and are composed of a few
hundred to 1000 compounds. All five high-throughput
screens were performed using almost the entire GNF
screening collection, and so all have roughly the same
set of compounds. The lists include all compounds with
confirmed activity in their respective assay using un-
purified material that had not undergone analytical
verification. Ideally, purified versions of each compound
that have also passed quality control tests would be
obtained for further experiments. However, this goal is
often difficult to achieve because of the required time
and resources. It is at this stage that the automated
marking functionality can help to prune and prioritize
compounds in a way that maintains explicit scaffold rep-
resentation. As Figure 5 shows, the percentage of com-
pounds in over-represented scaffold classes varies sig-
nificantly between screening projects. Of the five com-

Figure 6. Automated hit pick optimization of 4000 compounds from five representative HTS campaigns. Targets 1-3 correspond
to biochemical target-based inhibition screens, and cells 1 and 2 refer to cellular antagonist screens: (A) count of over-represented
scaffold classes; (B) count of marked compounds in over-represented scaffold classes; (C) compounds excluded from addition to
the hit pick list because they contained over-represented scaffolds; (D) the difference in the unique scaffold count after removing
over-represented compounds and adding compounds from new scaffold classes.

3188 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 9 Wilkens et al.



pound lists chosen, it appears that the lists from the
biochemical screens tend to have a higher degree of ov-
er-representation than the cellular screens. This is likely
due to a tendency for in-house HTS campaigns involving
biochemical targets to be less noisy than campaigns in-
volving cellular assays. Although biasing toward known
active chemical features can produce a large number of
hits for a given screen, the compounds that are identi-
fied as hits can be undesirable lead candidates because
of intellectual property hurdles. Therefore, marking and
removing compounds from over-represented scaffolds
can reduce the amount of resources expended on com-
pounds that are unlikely to be selected for development
by medicinal chemists. This is especially important in
cases where a medicinal chemist has not had the
opportunity to analyze the data or become familiar with
the patent landscape around a particular target.

Optimizing HTS Hit Lists for Diversity. The
automated marking feature provided by HierS can also
be used to optimize the HTS hit selection process. When
HTS hits are selected, it is not uncommon to have re-
sources for additional experiments on a fixed number
of compounds, where the number of “active” compounds
may be more or less than the upper limit on capacity.
In other words, biologists may wish to select the top N
compounds for follow-up experiments, regardless of whe-
ther N is greater than or less than the number of com-
pounds that met the hit criteria. Typically, activity is
the only criterion used to prioritize compounds for fol-
low-up experiments. However, if HTS is viewed as a
means to provide lead candidates for medicinal chem-
istry, scaffold diversity is an equally important criterion.
To demonstrate this approach, the top 10 000 com-
pounds from each of the HTS campaigns used above
were labeled as biologically interesting hits and ranked
by potency in their respective screen. For demonstration
purposes, a follow-up capacity of 4000 was chosen (i.e.,
N ) 4000), which means that the top 4000 compounds
from each list of 10 000 were treated as the starting hit

list for each screen. To begin the process of optimizing
the hit lists for diversity, the scaffolds for the top 4000
compounds in each set were computed and the over-
represented compounds were marked using the three
APT thresholds. In this case, at least two compounds
were left unmarked to serve as representatives for the
rest of the compounds in each over-represented scaffold
class. The representatives were selected by first ranking
the compounds in the scaffold class in descending order
based on the number of neighbors within a scaffold class
that have a Tanimoto similarity greater than or equal
to 0.85, then selecting two compounds with the most
neighbors. Next, the marked compounds were removed
from the lists in each case. To fill the vacancies left by
the removed compounds, HierS proceeded down the
ranked lists of the remaining 6000 compounds in each
set and added each new compound that did not contain
any of the over-represented scaffold substructures until
the hit lists reached the upper limit of 4000. Finally,
the scaffolds for each new set of compounds were com-
puted to determine the difference in the total nonredun-
dant scaffolds between the initial and final hit lists. The
results from this exercise are summarized in Figure 6.

The total number of over-represented scaffolds for
each APT threshold in each data set is shown in Figure
6A. The number of over-represented scaffolds varies
from about 50 to 350, where the target 1 screen has the
fewest, target 2 has the most, and the remaining screens
have about the same number of over-represented scaf-
folds. From these results, there does not appear to be a
significant trend in scaffold selectivity between cell-
based and biochemical screens for the particular data
sets used in this study.

Figure 6B shows the number of compounds in over-
represented scaffolds classes that were removed from
the initial 4000-compound list for each screen for each
of the APT thresholds. Clearly, the target 2 screen
exhibits far more over-representation than the other
four screens. This result indicates that either the screen

Figure 7. Scaffold filter page.
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is particularly selective for a few scaffold classes or there
were experimental artifacts associated with compounds
of a certain structure, such as reactive side products
that were left over from combinatorial synthesis. Figure
6C shows the number of compounds from the remaining
set of 6000 compounds that were disqualified from
inclusion into the final hit lists because they also
contained one or more of the over-represented scaffold
structures. As with parts A and B of Figure 6, target 2
has the largest number of excluded compounds. This
further indicates a strong bias toward compounds
containing the scaffolds that were identified as being
over-represented in the top 4000 compounds. Figure 6D
shows the difference between the number of nonredun-
dant scaffolds in the initial and final hit lists. For target
2, cell 1, and cell 2 the number of distinct scaffolds in
the final set was greater than that in the initial set for
all three APT thresholds. However, target 1 and target
3 displayed mixed results. In these cases HierS does not
provide a significant improvement in scaffold diversity,
which is not surprising given that chemical diversity of
active compounds will vary from screen to screen. The
ability to perform this analysis before the execution of
the hit pick enables one to determine the best option
before allocating resources. In this way, HierS can be
used to filter and add compounds to facilitate the
identification of novel scaffolds from the HTS data that
might have otherwise been overlooked.

Web-Based Clustering with HierS: Case Study
of DTP Cancer Data. The GI50 data20 from the NCI
compound set were used as test data for HierS analysis.
These data were deemed to be the most suitable because
they most closely resemble the hit criteria used by
biologists at GNF. For this data set, GI50 ) 100 nM in
a given screen was considered a hit. This strict hit
criterion was chosen because the data set consisted of
many compounds that show significant potency in
several cell lines. For simplicity, the DTP data were
grouped by panel as defined by the NCI, where each
panel can be made up of several cell lines from related
tissues. The 14 panels used consisted of non-small
(lung), small (lung), colon, ovarian, leukemia, renal,
melanoma, central, breast, prostate, sarcoma, LYM
(lymphoma), MIS (Mullerian inhibiting substance), and
FIB (fibroblast) cell lines. A “hit” in one or more of a
given panel’s cell lines counted as one hit for the panel.

The process of analyzing scaffolds begins with the
selection of compounds. We considered the set of 1603
hits from the leukemia panel for this analysis. The next
step in the process involves specifying the scaffold filter
criteria, as shown in Figure 7. These filter criteria define
the entry point for traversing the complex network of
substructures created by the scaffold building process.
The filters provided for selecting scaffolds are upper and
lower bounds for the number of member compounds,
rotatable bonds, total rings, aromatic rings, and atoms.

Figure 8. Scaffold main page.
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In addition, filters specifying the maximum and mini-
mum molecular weight and APT are also included.
Unspecified filters are ignored.

Once the scaffold filter form is submitted, HierS
builds the set of scaffolds for the compound set and
computes their hierarchical relationships. Once the
scaffold set is constructed and filtered, the list is sorted
in descending order according to their member com-
pound count. If two or more scaffolds have the same
number of derived compounds, they are sorted in
ascending order on the basis of the atom count in each
scaffold. Following this, any scaffold that is structurally
derived from another scaffold that precedes it in the list
is removed. This ensures that no scaffold on a given
page is a substructure of another scaffold on that page.
In other words, each scaffold represents a separate
branch in the hierarchical scaffold network. Finally, the
scaffolds are displayed as shown in Figure 8; 1163 of
1570 compounds (74%) are represented in the scaffold
classes that satisfied the filter requirements, and 33
compounds were excluded in analysis, 28 of which were
rejected because they contain only one ring system,
which is a benzene ring. The remaining five compounds
were rejected because they contain large and flexible

single ring structures (e.g., cyclosporine), which often
require an excessive amount of processing time. From
left to right, the data displayed are the scaffold struc-
ture, number of member compounds, number of marked
compounds, APT, and the screen hit histogram of the
compounds in the scaffold class. Scaffolds are sorted by
the number of member compounds so that the most
common scaffolds are shown first. The screen hit
histogram displays the count of the compounds in the
scaffold class that were considered a hit in any prior
assay. Assays where none of the compounds were
considered hits are not displayed. In this way, core
structural features are coupled to historical biological
data to allow both chemists and biologists to rapidly
assess the structural desirability and specificity of a
given compound class. All of the compounds within a
particular scaffold class can be “marked” by clicking the
Mark link. This feature is typically used to partition
undesirable compounds from the rest of the set.

As stated above, the filter parameters specify the
entry point for viewing the scaffolds. Strategies for
viewing different portions of the scaffold set can be
developed by tuning the filter parameters. In general,
the default of selecting for scaffolds with a minimum of

Figure 9. Scaffold drill down page. Although the scaffolds listed on the scaffold drill down page cannot be directly reduced to the
N-benzylbenzenamine scaffold, they are still derived from the N-benzylbenzenamine scaffold because each scaffold contains
N-benzylbenzenamine as a substructure.
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five member compounds and two rings serves as a good
starting point. For example, if one is interested in view-
ing only scaffolds that are kinase-inhibitor-like (e.g., BI-
RB 79612), the scaffolds can be refiltered to select scaf-
folds that have at least three rings and at least two or
three rotatable bonds. To view all the scaffolds that con-
tain compounds that share a large degree of overall
similarity, the minimum APT filter can be set to 0.80.
Because the scaffolds are computed only once, several
filtering operations can be performed in rapid succes-
sion.

One can drill down into a scaffold class by clicking
on the scaffold image. This is equivalent to taking a sin-
gle step down the scaffold hierarchy. For example, Fig-
ure 9 displays the result of clicking on the N-benzyl-
benzenamine scaffold, which is listed further down on
the scaffold main page (not shown). All of the com-
pounds that contain the N-benzylbenzenamine scaffold
can be viewed by clicking the “View Compounds” link
below the scaffold structure, as shown in Figure 10.
These pages provide a larger picture of the screen hit
histogram, which is followed by a list of all the scaffolds
that are structurally derived from the scaffold that was
selected or all the compounds in the selected scaffold,

respectively. The screen hit histograms in Figures 9 and
10 provide selectivity information for the compounds in
the N-benzylbenzenamine scaffold class. In this ex-
ample, the compounds that contain the top two scaffolds
that are derived from N-benzylbenzenamine are selec-
tive for the leukemia, non-small lung, and renal cancer
cell lines. This information can be critical for prioritizing
scaffolds based on the selectivity profile, which may be
indicators of potential toxicities or off-target effects.

As with the scaffold main page, scaffolds in scaffold
drill down page (Figure 9) are sorted by the number of
member compounds. In addition, more details on the
scaffolds in the list can be obtained by clicking on a
scaffold structure image. In this way, the entire struc-
tural hierarchy can be quickly navigated. Also, it is
interesting to note that in Figure 9 there is stated a
total of 50 compounds represented by the scaffolds on
the page. In addition, there are 15 scaffolds on the page
that are derived from the N-benzylbenzenamine scaf-
fold. Just as with the scaffold main page, each N-
benzylbenzenamine-based scaffold represents a distinct
branch of the structural hierarchy in the scaffold
network. Clicking on any N-benzylbenzenamine-based
scaffold will cause HierS to take an additional step down

Figure 10. Compound drill down page.
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the scaffold hierarchy. This process can be repeated a
number of times until the particular branch scaffold
network is exhausted (which is usually between three
and five clicks). Following this process, the chemical
landscape in a given set of compounds can be quickly
traversed in a structurally directed fashion.

After all the undesirable compounds have been marked
for removal, the edited list can be downloaded and
stored. This allows for collaboration between medicinal
chemists and biologists during the hit selection process
so that a large hit list can be reduced in size in order to
remove compounds from over-represented and promis-
cuous scaffold classes or compounds from scaffolds
classes that are believed to have structural features that
lead to artifacts in the data.

The automated process for identifying over-repre-
sented scaffold classes can also be controlled from the
Web application interface provided in HierS. This is
done in the “Auto Mark Options” dialogue on the
scaffold filter page (Figure 7). Three choices of APT
threshold are provided (“Loose”, “Medium”, and “Strict”)
by a dropdown box, in addition to a dropdown box for
specifying the number of compounds to keep from each
over-represented scaffold class. Compounds can be
selected to be left marked according to their potency or
by how well a given compound structurally represents
the other compounds in the scaffold class (as defined
by how many other compounds in the scaffold class are
within a Tanimoto distance of 0.80).

When the automated process of marking compounds
in over-represented scaffold classes is completed, the
marked compounds can be inspected on the scaffold
main page by either clicking on the number of marked
compounds (see Figure 8) or navigating the hierarchy
of scaffolds in the usual way. The automated marking
of compounds serves as a starting point from which
more compounds can be manually marked or unmarked.
In this way, the user always has the final decision in
what is removed and what is not. In addition, com-
pounds can be marked or unmarked on the basis of their
potency. This ensures that a user can retain the most
potent compounds, regardless of their scaffold classifica-
tion.

Conclusion

The topological graph-based approach for clustering
that is implemented in HierS provides an efficient and
straightforward mechanism for visualizing and editing
the diverse compound sets. By clustering compounds by
their explicit topological structure, HierS provides a
readily interpretable ordering of compound data. HierS
is particularly useful for analyzing hit lists produced
by high-throughput screening because chemical scaf-
folds are coupled with historical biological data to enable
a rapid correlation between scaffold features and bio-
logical activity. In addition, the ability to automark com-
pounds in structurally over-represented scaffold classes
in HierS provides a simple way to reduce the number
of compounds in given set while minimizing the loss of
scaffold diversity. Removing compounds by this process
improves the efficiency of the follow-up process in the
lead discovery phase by ensuring that all scaffold classes
are represented while at the same time minimizing the

resources that are expended on compounds that are
eventually found to be unsuitable for medicinal chem-
istry.

Because HierS groups compounds according to a
single shared topological structure, it provides a simple
means for extending the analysis to include further
automated statistical or predictive modeling. For ex-
ample, the scaffolds identified by HierS could prove to
be useful in providing preliminary structure-activity
relationships (SAR) within scaffold classes. Predictive
models for R-group substitutions could be generated in
an automated fashion using previously presented meth-
ologies.23,24 In addition, comparing the number of active
versus inactive compounds that contain a given (over-
represented) scaffold can provide statistical insight into
the enrichment of the scaffold in a HTS campaign.
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