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Abstract

Motivation: While link prediction methods in knowledge graphs have been increasingly utilized to locate potential
associations between compounds and diseases, they suffer from lack of sufficient evidence to explain why a drug and
a disease may be indicated. This is especially true for knowledge graph embedding (KGE) based methods where a
drug-disease indication is linked only by information gleaned from a vector representation. Complementary pathwalking
algorithms can increase the confidence of drug repositioning candidates by traversing a knowledge graph. However, these
methods heavily weigh the relatedness of drugs, through their targets, pharmacology or shared diseases. Furthermore,
these methods rely on arbitrarily extracted paths as evidence of a compound to disease indication and lack the ability to
make predictions on rare diseases.
Results: In this paper, we evaluate seven link prediction methods on a vast biomedical knowledge graph for drug
repositioning. We follow the principle of consilience, and combine the reasoning paths and predictions provided by
path-based and KGE methods to not only demonstrate a significant ranking performance improvement but also identify
putative drug repositioning indications. Finally, we highlight the utility of our approach through a potential repositioning
indication.
Availability: The MIND dataset can be found at 10.5281/zenodo.8117748. The python code to reproduce the entirety
of this analysis can be found at https://github.com/SuLab/{KnowledgeGraphEmbedding, CBRonMRN}.
Contact: Andrew I. Su at asu@scripps.edu
Supplementary information: Supplementary data are available at The Journal Title online.

Key words: drug repositioning, biological networks, computational biology, heterogenous networks, knowledge graph
completion, case-based reasoning, knowledge graph embedding

Introduction

The estimated cost to bring a drug to market increased from

$802 million to $2.7 billion between 2003 and 2013 due to drug

attrition, longer development timelines and changing regulatory

requirements, adjusting for inflation (1). Drug repositioning,

the process of identifying a new indication for an advanced clini-

cal compound or approved drug, has become increasingly more

attractive by leveraging prior work characterizing a drug can-

didate’s safety and efficacy profile; resulting in a concomitant

decrease in time to market, risk of failure, and investment costs

(2).

An emerging area in computational drug repositioning

exploit features in knowledge graphs, networks consisting of

a set of entities including but not limited to “drugs”, “genes”

and “diseases” bound together by relationships like “associated

with” or “treats”, to identify new connections between a drug

and a disease (3). Common drug repositioning method have

identified prospective candidates through exploiting drug-drug

and disease-disease similarities in a knowledge graph (4; 5; 6).

Alternative approaches have utilized graph traversal algorithms

like shortest path and random walks, or path ranking algori-

thms like degree weighted path count to prioritize paths linking

a drug and a disease (5; 7; 8; 9; 10; 11). More specific graph

traversal methods have applied deep learning methods by for-

malizing drug repositioning as a reinforcement learning task for

link prediction (12; 13).

Link prediction methods like Knowledge Graph Embedding

(KGE) and Case based reasoning (CBR) have enjoyed success

in identifying relationships in large semantic based knowledge

graphs and can be utilized to establish links between a drug

and a disease as drug repositioning candidates. KGE algorithms
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learn a vector representation of each entity and relation in n-

dimensional space for link prediction in a knowledge graph, and

represent a class of novel methods for computational drug repo-

sitioning (14; 15; 16; 17; 18). As knowledge graphs by nature

are inherently incomplete, KGE are a powerful method for drug

repositioning because they can extrapolate relationships betw-

een compounds and diseases in embedding space without the

restriction of traversing a knowledge graph. This is particu-

larly useful for identifying drug repositioning candidates in rare

diseases as they are not well characterized.

Case based reasoning (CBR) is an established technique

from artificial intelligence modeled after human ability to

retrieve and apply prior experience to tackling a new but simi-

lar challenge, and represents another promising approach to

conduct drug repositioning (19; 20; 21; 22; 23). While not spe-

cifically applied to drug repositioning, (24) demonstrated the

utility and effectiveness of this simple approach for link pre-

diction on knowledge graphs. Applied to drug repositioning,

pathways from other similar compounds can be leveraged as

evidence to identify a potential disease treatment given a com-

pound of interest. This is beneficial as the analogy to other

drugs provides mechanistic insight for the application of a

compound to a disease.

In this paper, we apply the concept of consilience, that evi-

dence from independent provenience can converge on a conclu-

sion, to drug repositioning through the use of various knowledge

graph completion approaches. We highlight the performance

of seven KGE and path-based reasoning methods on a large

biomedical knowledge graph using approved drug-disease indi-

cations, and conduct a thorough analysis of our combined model

prediction results against each algorithm evaluated. Finally, we

demonstrate the effectiveness of our approach through manual

curation and identifying plausible drug repositioning indica-

tions by combining the results of both complementary link

prediction methods.

Methods

A Mechanistic Repurposing Network with Indications
(MIND) Knowledge Graph
Mechanistic Repositioning Network with Indications (MIND)is

a knowledge graph that distinguishes approved drug indicati-

ons from semantically derived drug-disease relationships. Based

on MechRepoNet, a knowledge graph that reflects important

drug mechanism relationships identified from a curated bio-

medical drug mechanism dataset, MIND elevates pre-existing

DrugCentral (a curated resource with regulatory approved drug

indications) obtained treat edges as indication edges (25; 26).

The treat edge represents a weaker link between a drug and

disease compared to the indication edge as treat edges are not

substantiated by regulatory approval. In MIND, when both

indication and treat edges exist, indication superseded and

replaced treat edges. In total, MIND consists of 9,652,116 edges,

249,605 nodes, 9 node types and 22 relations. Supplementary

Figure 1 (upper) highlights total node to node and (lower) node

to relation counts in MIND as a whole.

Link Prediction Algorithms for Drug Repositioning
In this paper, we utilized and evaluated a variety of algori-

thms for drug repositioning on MIND. These algorithms fall in

two classes: knowledge graph embeddings, and path reasoning

methods.

Knowledge Graph Embeddings (KGE)

Knowledge graph embedding algorithms model missing graph

links by defining a scoring function for each triple. A know-

ledge graph is made up of a collection of triples (head, relation,

tail), where the set of all entities is represented by h, t ∈ E,
and the set of all graph relations is represented by r ∈ R. Each

entity is represented by a vector embedding, and is modeled by

a score function fr(h, t). The goal of knowledge graph embed-

ding algorithms is to score true triplets (h, r, t) higher than

corrupted (untrue) triplets (h′, r, t) or (h, r, t′). In this paper,

we trained knowledge graph embedding models on MIND with

the following algorithms: TransE , DistMult , ComplEx and

RotatE (17; 27; 28; 29). More information regarding the algo-

rithms and their respective scoring functions are provided in

Supplementary Table 1.

Path Reasoning Methods

Path reasoning methods leverage and traverse knowledge graph

edges to identify potential drug repositioning candidates. Here

we describe two path based reasoning methods we evaluated for

drug repositioning: Degree Weighted Path Count (Rephetio)

and Case based reasoning.

Degree Weighted Path Count, an algorithm from the Rephe-

tio project, penalizes paths traveling through high-degree nodes

when calculating metapath (path based on node type) pre-

valence; metapaths are incorporated into a logistic regression

to calculate the expected probability a compound treats a

disease (10). Mayers et. al. expanded on this approach and

incorporated rules based path exclusions and hyperparameter

optimization schemes to improve path interpretability for drug

repositioning (25).

Case based reasoning (CBR), a problem solving approach

analogous to how a doctor prescribes a treatment by relying

upon their prior experiences, applies similar solutions from

compounds most like a given drug to identify a putative dis-

ease treatment. CBR models first retrieve similar entities to

the query entity, hq, that have the specified query relation, rq

given a query (hq, rq). Next, the set of relations connecting

the similar entities to their answer via rq are collected and the

paths obtained are applied to the query entity hq to identify the

answer (24). Probabilistic case based reasoning (pCBR) extends

the original case based reasoning method by using k-nearest

neighbors to improve similar entity recognition and by utilizing

probabilistic models to estimate the likelihood a retrieved path

is correct given the query relation (30).

In this paper, we applied KGE algorithms (TransE,

DistMult, ComplEx and RotatE) and path reasoning methods

(Mayers et al. implementation of Rephetio, CBR and pCBR)

to identify putative drug repositioning candidates and their

corresponding path reasoning evidence.

Drug Repositioning with Consilience
Consilience, the principle that evidence from unrelated sources

converge on strong conclusions, was applied and evaluated by

testing the ability of seven knowledge graph completion meth-

ods to correctly prioritize approved drug-disease indications

over unknown drug-disease links.

Hyperparameter Optimization

Hyperparameters were tuned over MIND train and validation

splits and evaluated on the test split utilizing a compound-

to-disease indication train/test/validation split of 80/10/10%,

respectively; Algorithms were evaluated using hits at k, the
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Fig. 1. Consilience inspired Drug Repositioning Schematic. (1) Each kno-

wledge graph completion model is trained on a biomedical knowledge

graph and (2) evaluated on approved drug indications (test set). (3) Given

each model’s putative predictions, (4) the common answer ranks are colle-

cted, averaged and (5) resorted to identify drug repositioning candidates.

success rate of identifying the correct answer among the top

k predictions, and mean reciprocal rank (MRR), the average

of the reciprocal of the positional rank for all correct answers.

KGE and CBR hyperparameters were optimized using Optuna

software (31). Rephetio was optimized independently through

its own hyperparameter optimization pipeline. Hyperparame-

ter optimization selected parameter values can be found at

Supplementary Tables 2 and 3, respectively.

Consilience of Seven Algorithm Predictions

The top 100 rank predictions for each drug-disease indication

in the test set for each computational method were aggregated

into algorithm combinations of sizes two to seven. The disease

ranks from each drug prediction by each algorithm in an algori-

thm combination are then aggregated following an intersection

operation. Under an intersection policy, only diseases reported

by all algorithms are retained.

Following aggregation, the predicted disease ranks or reci-

procal ranks for each drug in an algorithm combination are

averaged and the set of 100 diseases are re-ranked from best to

worst. Statistical testing was conducted on the rank distribu-

tions of approved vs predicted indications grouped by algori-

thm combination lengths using the Kruskal-Wallace H-test; a

non-parametric method of comparing medians of groups. The

Mann-Whitney U-test was applied to observe differences betw-

een the distributions of approved and unknown drug to disease

indications.

Evaluating Plausibility of Predicted Indications

In order to evaluate the plausibility of drug repositioning can-

didates, literature curation was conducted for each drug and

its top disease candidate (first re-ranked position) from the

test set. Every putative indication was categorized into three

categories: positive, negative or neutral effect. An indication

prediction was labeled “positive” if literature review suggested

a drug treated or improved the disease condition; these pre-

dicted edges have the potential to become drug indications

and warrant further study or are already used clinically off-

label. “Negative” labels are predicted indications that might

induce, negatively impact or exacerbate the effect of the drug

Table 1. Drug to disease indication validation performance results

for seven algorithms. Intersection (7) represents MRR and hits at k

calculated with seven algorithms and their respective policies.

Algorithm MRR Hits@1 Hits@3 Hits@10

Intersection (7) 0.9540 0.9080 1.0000 1.0000

CBR 0.0424 0.0093 0.0480 0.0980

probCBR 0.1814 0.1170 0.1863 0.3064

Rephetio 0.1229 0.1403 0.2055 0.3439

TransE 0.1765 0.0685 0.1996 0.4168

RotatE 0.1682 0.0920 0.1898 0.3229

DistMult 0.0742 0.0176 0.0744 0.1761

ComplEx 0.0904 0.0274 0.0841 0.2329

on the disease. Finally, “neutral” labeled edges have no litera-

ture support for the given drug and disease prediction, or have

been found to neither treat nor modify disease outcomes. The

curation results can be found in the supplementary file.

Results

In this section, we applied several knowledge graph completion

algorithms on the MIND dataset to identify drug repositioning

candidates using consilience. First, we trained and evaluated

the performance of each knowledge graph completion algori-

thm independently on DrugCentral indications in MIND and

compared against our consilience approach. Next, we stu-

died the intersection policy’s ability to rank true indications

and unknown edge predictions. Following, we investigated the

plausibility of our putative top drug repositioning candidates

indications by gathering supporting evidence through manual

curation in literature. Finally, we explored the mechanism of

action of a potential drug repositioning indication.

Knowledge Graph Indication Prediction Performance
Comparison
Each algorithm’s prediction efficacy on approved indications

was evaluated by training and testing on MIND. We applied

and evaluated the consilience principle on approved indicati-

ons following the aforementioned intersection operation. Table

1 highlights each algorithm’s prediction performance. Among

the path traversal methods, we observed that probCBR perfor-

med the best with a MRR of 0.1814. Meanwhile, the highest

performing embedding-based approach, TransE, performed sli-

ghtly worse than probCBR with a MRR of 0.1765. We observed

the intersection policy performed the best overall for this task,

outshining individual algorithm predictions with an MRR of

0.9540.

Consilience Policy Effect on Predicted Putative
Indications
After comparing our consilience approach against individual

algorithms’ ability to identify approved indications, we inve-

stigated the effects of consilience policy on indication ranking

performance and on potential drug repositioning candidates

counts. Figure 2 illustrates the MRR prediction performance
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Fig. 2. Approved indication prediction MRR and indication counts with

respect to algorithm length used for consilience. Solid line denotes average

MRR for algorithm combinations of lengths two to seven. Total potential

prediction counts are demarcated by dashed lines and its y-axis is log

scaled.

on approved indications and candidate prediction counts with

respect to the number of algorithms considered for consilience.

Following an intersection policy (solid line), a concomi-

tant increase in MRR is observed with increased algorithm

combination length. This approach increases MRR performa-

nce from 0.2812 to 0.9540 when consilience length increases

from two to seven, respectively. Regarding putative indica-

tion counts (dashed line), the intersection policy’s prospective

indications drop precipitously as algorithm combination length

increases. Despite the significant improvement in MRR perfor-

mance under an intersection policy, only 87 indications remain

when algorithm combination length is seven.

Next we visually and statistically explore the consilie-

nce inspired approach on ranking approved indications and

prospective indications across varying algorithm combinations

to study how consilience policy affects ranking distributions.

Figure 3 demonstrates the approved indication (Indication)

and prospective indication (Not Indication) rank distributions

for intersection policy across varying algorithm combination

lengths.

Subject to an intersection policy, Figure 3 highlights strong

ranking performance among both “Indication” and “Not Indi-

cation”, with approved indications perceptably ranking better

than putative drug repositioning candidates. The median indi-

cation rank was 1 with 87 counts, whereas the median predicted

candidate (Not Indication) rank was 2 with 68 counts at a

combination length of seven. Applying the Kruskal-Wallis H-

test showed at least one distribution median was statistically

different from the others; subsequent statistical testing using

the Mann-Whitney U-test demonstrated each pair of distributi-

ons for each algorithm combination were statistically significant

(p<0.001). Supplementary Tables 4 and 5 show the Kruskal-

Wallis H-test and Mann-Whitney U-test statistics and p-value,

respectively.

As a whole, these results suggest that intersection policy

significantly improves the ranking performance on approved

indications but decreases the number of potential drug repo-

sitioning candidates.

Intersection Putative Indications for Annotation
As a rough estimate of prediction performance, we investigate

the plausibility of putative predictions for each top predicted

drug repositioning candidate with a manual literature search.

The effect of each drug on its predicted potential indication

Fig. 3. Indication and non-indication disease rank distribution after re-

ranking. X-axis represents algorithm combinations between CBR, pCBR,

Rephetio, TransE, DistMult, ComplEx and RotatE of sizes two through

seven. Boxplot distributions highlight the first, second and third quarti-

les for indication and non-indication disease ranks. The distribution for

indication and non-indication sets are statistically significant regardless

of algorithm combination length. Violin plots highlight the intersection

policy indication and non-indication disease rank distribution; the y-axis

is log scaled.

is categorized as a positive, negative or neutral effect. Obse-

rving prior defined criteria, we found that of the 87 intersecting

potential indications, 25 were ranked in first place. Of the 25,

80% (20) were categorized as positive effects, 20% (5) as neu-

tral effects, and 0 as negative effects. In contrast, 64% (16),

40% (8) and 4% (1) of the predictions from the best valida-

tion set performing algorithm, probCBR, were categorized as

positive, neutral, or negative effects, respectively. The best per-

forming knowledge graph embedding method, TransE, fared

worse with 4%, 96% categorized as positive, and neutral effects,

respectively. Through literature curation, we demonstrated our

consilience inspired approach outperformed individual algori-

thm’s in predicting prospective drug repositioning indications.

Curation summary is illustrated in Table 2. Full curation results

can be found in the Supplementary File.

Case Study: Sotalol hydrochloride as a potential
treatment for hypertension
Among the most confident predictions made by our consili-

ence inspired approach was the use of sotalol hydrochloride

(sotalol) to treat hypertension. This predicted indication was

made by all seven algorithms at ranks ranging from 1 to 88

as seen in Supplementary Table 6. Sotalol, an atypical beta

blocker, is approved to treat arrhythmias like atrial fibrilla-

tion and ventricular tachycardia. While sotalol has not been

approved for hypertension, various clinical studies have demon-

strated its efficacy in controlling hypertension independently

and as an adjunctive therapy with thiazides (32; 33; 34). Uti-

lizing our computational repositioning approach, we propose

three mechanisms by which sotalol may moderate hypertension

(a condition characterized by increased arterial blood pressure)

through potassium channel activity, ADRB1 and FNDC4. Each

prospective mechanism retrieved were the top ranked paths by

each path reasoning method and is illustrated in Figure 4.

A canonical avenue sotalol may manage hypertension

is through inhibition of ADRB1, a β-adrenergic receptors.

ADRB1 inhibition mediates adrenaline’s effect on the heart,
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Table 2. Drug to disease indication validation performance results for seven algorithms. Intersection (7) represents MRR and hits at k

calculated with seven algorithms and their respective policies.

CBR pCBR Rephetio TransE DistMult ComplEx RotatE Intersection (7)

Positive 44% (11) 64% (16) 44% (11) 4% (1) 60% (15) 68% (17) 64% (16) 80% (20)

Neutral 52% (13) 40% (8) 40% (10) 96% (24) 40% (10) 28% (7) 24% (6) 20% (5)

Negative 4% (1) 4% (1) 16% (4) - - 4% (1) 12% (3) -

Fig. 4. Three prospective mechanisms that sotalol hydrochloride may treat hypertension. Each path shown was the first extracted path suggested by

pCBR, Rephetio and CBR for the putative indication. Green, purple, pink and blue circles represent compounds, biological processes, genes & proteins,

and diseases, respectively. Orange arrows in between nodes describe node relationships.

resulting in concomitant decreased blood pressure and cardiac

output (35). As sotalol and amosulalol both directly block

ADRB1, a protein and gene associated with hypertension, and

amosulalol has anti-hypertensive effects, it is reasonable that

sotalol also has anti-hypertensive effects (36; 37).

Another approach sotalol may modulate hypertension is

through potassium channel activity (38). While potassium

channel blockers are associated with exacerbating blood pres-

sure as it prevents the outflow of potassium ions, it is plausible

that sotalol’s inhibition of inward-rectifier potassium channels

(repolarization) induces vasodilation and as a result, decreases

blood pressure (39; 40; 41).

Finally, sotalol may manage hypertension through upregu-

lating the expression of FNDC4, an anti-inflammatory factor

(42). FNDC4 belongs to the fibronectin type III domain-

containing protein family, and is highly homologous to irisin,

a myokine derived from the proteolytic cleavage of FNDC5

(43; 44). Deletion and overexpression of irisin has been shown

to exacerbate and ameliorate cardiac hypertrophy in rats with

hypertension, respectively (45). As sotalol and pirinixic acid

treatment both upregulate irisin expression, and pirinixic acid

has hypertension mediating effects, it is probable that sotalol

also exhibits anti-hypertensive properties (46; 47).
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Discussion

In this paper, we apply a consilience based approach on

seven algorithms and demonstrate an enhanced ability to pre-

dict approved and putative indications. By combining path-

based and KGE algorithms, our method synergistically bolsters

path-based and KGE inspired drug repositioning performa-

nce through increased resilience to missing edges and reinfo-

rced prospective drug repositioning indications with reasoning

chains. Our strategy not only validates KGE derived predi-

ctions, but it also allows path-based predictions to prioritize

diseases with minimal similar cases in the graph.

Although our method viably identifies potential repositio-

ning candidates, one challenge in our implementation is the

restrictive nature of the intersection policy. As the number of

algorithms applied for consilience increases, the fewer putative

indications remain (as illustrated in Figure 2). This issue can

be ostensibly mediated by either increasing the number of total

predictions made per indication and/or increasing the number

of compounds used for inference. Expanding our study limits

for each algorithm’s predictions (from 100 to the top 1000 ran-

ked diseases and/or inference compounds from 500 to 1000),

barring computational limits, could be considered.

An additional avenue to address the intersection policy’s

restrictive properties is through a partial-intersection policy;

instead of eliminating popular but nonunanimous predictions,

the rank is padded with a tunable user specified rank. This

approach preserves intersecting prospective indications and

penalizes partially-intersected candidates during the re-ranking

step. Notably our unreported preliminary study demonstra-

ted a decrease in approved indication performance following

a partial-intersection procedure.

Another challenge to our approach is the equal weighting of

each algorithm’s predictions in its irrespective of prior observed

performance on a dataset. Weighting each algorithm’s contri-

butions by the predicted indication rank or by incorporating an

algorithm’s cross validation performance into a logistic regres-

sion would potentially improve the prediction efficacy of the

algorithm. These modifications would further fuel the addition

of diverse algorithms into our implementation.

Finally, our utilization of path-based methods does not miti-

gate similarity based drug-disease associations, even when the

results are filtered by those that also occur in KGE approa-

ches. For example, the pathway identified by our approach in

the between sotalol hydrochloride and hypertension, traverses

through ADRB1, a commonly shared target by amosulalol and

sotalol, in order to treat hypertension. While similarity based

paths correctly identify analogous family compounds (sotalol

and amosulalol are both beta blockers), adding simple path

similarity filters or penalties to the path retrieval mechanism

would likely improve both the path retrieval algorithm and our

own approach.

Regardless of variation of the consilience strategy applied,

our results demonstrate that even with a naive approach, we

were able to identify putative drug repositioning candidates

that are supported by existing literature. Our strategy synergi-

zes the advantages of both KGE and path-based algorithms

by blending their combined predictive power and strengths.

Through manual literature curation, we demonstrate that our

method is more likely to identify a drug repositioning indica-

tion than when utilizing each algorithm alone. Moreover, our

method enables human interpretable reasoning chains derived

from path-based approaches to support a putative compound

to disease indication that would otherwise not be present with

KGEs alone.
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