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Abstract

Motivation: Biomedical literature is growing at a rate that outpaces our ability to harness the knowledge contained
therein. To mine valuable inferences from the large volume of literature, many researchers use information extrac-
tion algorithms to harvest information in biomedical texts. Information extraction is usually accomplished via a com-
bination of manual expert curation and computational methods. Advances in computational methods usually de-
pend on the time-consuming generation of gold standards by a limited number of expert curators. Citizen science is
public participation in scientific research. We previously found that citizen scientists are willing and capable of per-
forming named entity recognition of disease mentions in biomedical abstracts, but did not know if this was true with
relationship extraction (RE).

Results: In this article, we introduce the Relationship Extraction Module of the web-based application Mark2Cure
(M2C) and demonstrate that citizen scientists can perform RE. We confirm the importance of accurate named entity
recognition on user performance of RE and identify design issues that impacted data quality. We find that the data
generated by citizen scientists can be used to identify relationship types not currently available in the M2C
Relationship Extraction Module. We compare the citizen science-generated data with algorithm-mined data and
identify ways in which the two approaches may complement one another. We also discuss opportunities for future
improvement of this system, as well as the potential synergies between citizen science, manual biocuration and nat-
ural language processing.
Availability and implementation: Mark2Cure platform: https://mark2cure.org; Mark2Cure source code: https://
github.com/sulab/mark2cure; and data and analysis code for this article: https://github.com/gtsueng/M2C_rel_nb.
Contact: gtsueng@scripps.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical literature is growing at rate of over a million new articles
per year in PubMed (https://www.ncbi.nlm.nih.gov/books/
NBK3827/) and represents a treasure trove of knowledge that forms
the foundation for the design of future experiments. Making that
knowledge more accessible and computable could save researchers
time, effort and resources (Yang et al., 2016; Zhu et al., 2013).
Researchers have effectively mined slices of the biomedical literature
to identify potential treatments for Raynaud’s syndrome (Swanson,
1986), drug candidates for Alzheimer’s disease (Li et al., 2009) and
potential mechanisms of ovarian oncogenesis (Urzúa et al., 2010).
Given the large potential to make valuable inferences and the large
volume of literature, many researchers have turned to information
extraction algorithms to harvest information in biomedical texts and
improve the value of existing data resources (Murray-Rust, 2017;

Pletscher-Frankild et al., 2015). Information extraction as a
process can be divided into a few sub tasks: (i) Named Entity
Recognition (NER), (ii) Entity Linking (EL) and (iii) Relationship
Extraction (RE).

NER entails identifying specific types of entities within biomed-
ical text [e.g. NGLY1(entity) is a gene(entity type)]. Once identified,
the NER term must be linked to an appropriate entry in a known
database to provide semantic context (e.g. NGLY1 can be linked to
gene 55768 in the NCBI Gene database). The process of linking
NER annotations to known databases to provide context and gener-
ate semantic annotations is known as EL or normalization
(Jovanovi�c and Bagheri, 2017; Morgan et al., 2008). After NER and
EL, the relationships between the semantic annotations are
extracted (Relationship Extraction/RE)—e.g. [NGLY1] (gene)
[mutations cause](relationship) [congenital disorder of
deglycosylation](disease).
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Algorithms for NER and EL have steadily improved thanks to
the BioCreative challenges and availability of gold standard corpora
(Morgan et al., 2008; Wei et al., 2015). Tools such as EXTRACT
(Pafilis et al., 2016) and those included in the PubTator suite
(Wei et al., 2013) are sufficient for use in facilitating manual biocu-
ration efforts. Furthermore, NER and semantic annotation algo-
rithms have expanded beyond the concept types originally explored
by the BioCreative challenges and now include post-translational
modifications (Sun et al., 2017), Gene Ontology terms (Ruch,
2016), metadata (Panahiazar et al., 2017), adverse effects (Ca~nada
et al., 2017) and more (Tseytlin et al., 2016). Semantic annotation
algorithms such as SemRep have been used to generate SemMedDB,
a PubMed-scale repository of subject–predicate–object triples
(Kilicoglu et al., 2012).

Because of its dependency on NER, EL, the complexity of the task
and the limited availability of training corpora and ontologies with re-
lationship annotations, automated approaches for RE have yet to reach
the performance levels of NER and EL (Wei et al., 2016). To overcome
those limitations, researchers have focused on improving NER and EL
methods (Xing et al., 2018), different learning and modeling
approaches (Peng et al., 2018) and expanding training datasets via min-
ing of knowledge bases (Zhou et al., 2018) or crowdsourcing via paid
microtask platforms (Li et al., 2016; Lossio-Ventura et al., 2018).
Crowdsourcing through paid microtask platforms to expand the train-
ing datasets has proven to have great potential, but questions regarding
scalability prompted us to investigate citizen science as a potential av-
enue for crowdsourcing RE.

Citizen science is a form of crowdsourcing in which nonprofes-
sional scientists voluntarily engage in different degrees of data col-
lection, analysis and/or dissemination of a scientific project (Haklay,
2013). The scalability of citizen science has enabled researchers to
collect, process and analyze unprecedented volumes of data leading
to advances in conservation and environmental science (McKinley
et al., 2017; Schmiedel, 2016), astronomy (Banfield et al., 2016;
Kuchner et al., 2016; Straub, 2016), biomedical research (Candido
dos Reis et al., 2015; Kim et al., 2014; Luengo-Oroz et al., 2012)
and more (Palermo et al., 2017; Williams et al., 2014).
Crowdsourcing and citizen science has previously been applied
toward NER of disease mentions via a platform called Mark2Cure
(M2C). It was found that in aggregate, annotations submitted by
trained citizen scientists were on par with expert annotators (Good
et al., 2015; Tsueng et al., 2016). Based on this finding, citizen scien-
tists may serve as an additional check for annotations generated by
computer algorithms, and address quality issues introduced by NER
and EL tools. The problem of insufficient gold standard corpora for
RE tasks can also be addressed by crowdsourcing (Aroyo and Welty,
2013; Burger et al., 2014). In aggregate, nonexperts recruited via a
microtask platform could perform relationship annotation on par
with expert curation (Dumitrache et al., 2015) provided that the
task is appropriately designed (Khare et al., 2015).

In this article, we describe the application of citizen science
toward RE from biomedical text. Specifically, we (i) provide a brief
overview of the RE module within the M2C platform, (ii) Evaluate
the ability of citizen scientists to perform RE taking into consider-
ation the limitations and ambiguities inherent in the system and (iii)
Compare the citizen science-generated data with the automated
results from SemMedDB to understand how the two may comple-
ment and enhance each other.

2 Materials and Methods

2.1 M2C relationship app design
The NER module within the M2C platform has previously been
described (Tsueng et al., 2016). Since the beta study, M2C has been
expanded to investigate multiple entity (or concept) types and for
RE of abstracts of interest for the NGLY1-deficiency rare disease
community. In M2C, ‘Entities’ are referred to as ‘Concepts’ because
initial user studies indicated that users found the term to be less
intimidating, confusing and off-putting. Hence, NER entities may be
referred to as concepts interchangeably. The RE App has a separate

training module, task list, task interface and feedback screen. M2C
is an open-source project, and code is available at https://github.
com/SuLab/mark2cure.

For the RE App, training consists of a series of interactive mod-
ules developed after several iterations of testing and feedback from
the M2C community. The first module introduces the user to the
task interface. The second module introduces the user to the two
fundamental rules of the task: (i) select relationship based only on
what is in the abstract (no prior knowledge) and (ii) select most
granular relationship without guessing. Users are expected to extract
relationships as they are asserted in the abstract, but are not
expected to evaluate the underlying biological truth of these asser-
tions. The third module has three submodules introducing the user
to the different kinds of relationships that they will need to classify
(gene–disease relationships, gene–drug relationships and disease–
drug relationships). Because there are no gold standards for this
task, users are provided with visual feedback on how their selection
aligned with that of the all the other users who have done the same
task. Each task needs to be evaluated by multiple users to be consid-
ered complete. Screenshots of the user interface for a sample task
and user feedback screen can be found in Supplementary Figure S1.

The M2C relationship app currently pulls concept annotations
using the PubTator suite (Wei et al., 2013). For each abstract, every
combination of heterogeneous concept pairs is calculated and desig-
nated as a task. Concept pairs within the same concept type are not
included because the relationship between concepts of the same con-
cept type tend to be hypernymic relationships (e.g. ‘is a’) which algo-
rithms are good at identifying (Rindflesch and Fiszman, 2003). For
example, a gene entity such as ‘Aladin’ will be paired with a disease
entity such as ‘Alacrima’ to form a heterotypic concept pair, but
that gene entity would not be paired with another gene entity such
as ‘ACTH’ since that would be a homotypic concept pair. Users are
presented with a concept pair and the concepts are highlighted in
the abstract to provide context. Based on the abstract text, the users
are asked to identify the relationship (or lack of relationship) be-
tween those two concepts. Users also have the ability to tag either of
the concepts as incorrectly identified/inappropriately annotated.

M2C is an ongoing project with active data collection and user
submissions. The data analyzed for this study were collected be-
tween May 5, 2016 and November 22, 2017. This dataset consists
of 4047 concept pairs pulled from 1058 abstracts annotated by 147
contributors; of which 1009 concept pairs from 234 abstracts were
marked by at least 15 different contributors.

2.2 Analytical methods
2.2.1 Generation of a M2C-specific pseudo-gold standard for

quality control

There were 1009 completed concept pair relationship (i.e. task)
annotations at the time of analysis, and a 10% sample (�100 con-
cept pairs) was desired for quality control (QC). About 120 PubMed
ID (PMID) PMID-specific concept pairs were randomly selected and
manually inspected to determine the expected response based on the
rules and available options. These annotations comprise the QC an-
notation set.

2.2.2 Contribution distribution, accuracy and aggregation

threshold determination

A relationship annotation task was considered complete once it had
been reviewed by at least 15 different contributors. The contribution
distribution was limited to just the set of completed task annota-
tions. For this set, the number of RE task annotations that each user
contributed was determined, sorted and plotted. For individual ac-
curacy estimation, the set of each user’s task annotations was com-
pared with the QC annotation set. The accuracy was estimated
based on the intersecting task annotations of the two sets and the
median of all user accuracy estimations was calculated. For aggre-
gate accuracy estimation, the user annotations for the concept pairs
that were QC’d were pulled into a data frame for further analysis.
Voter numbers (n) were set at values ranging from 1 (single vote) to
15 (maximum voters). For each concept pair, at each value of n, n
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users that annotated that concept pair were randomly selected and
the majority response for that concept pair was identified. If the
results were tied, one of the tied responses was selected at random.
For each value of n, the random selection and majority determin-
ation was performed 10 times (i.e. 10 iterations). The accuracy of
the responses in the QC’d set was calculated per each level of n, and
iteration. The median accuracy for each level of n was calculated
along with the q25 and q75 quartiles.

2.2.3 Identification of missing relationship types and verification of

nonrelationships

To identify missing relationship types, PMID-specific concept pairs
annotated as ‘has relationship’ or ‘other relationship’ were aggre-
gated to obtain the total number of users that marked each concept
pair as having a nonspecific relationship. User agreement threshold
(K) ranged from 1 (single voter, no agreement) to 15 (maximum
agreement). At each level of K, up to 25 PMID-specific concept pairs
were randomly selected for qualitative review. The concept pairs
and the respective user counts were exported, randomly assigned a
number and randomly sorted by that number. The user counts were
then masked to prevent biasing and each PMID-specific concept
pair was reviewed in-house. The same process was applied to
PMID-specific concept pairs marked as having ‘no relationship’ or
‘cannot be determined’.

2.2.4 Evaluating the effect of concept distance on accuracy

The abstracts were analyzed at the sentence level using the NLP
Tool Kit (NLTK) sentence tokenizer (Bird et al., 2009) to obtain an
average per-sentence character count which can be used to estimate
the concept distance at the sentence level. Only concepts with
known identifiers were analyzed as it would be more difficult to de-
termine the positional location of a term in an abstract when the
identifier is missing. Since the appropriateness of a concept annota-
tion should not be affected by concept distance, relation annotations
for concepts considered correctly annotated (i.e ‘not broken’) were
treated separately.

2.2.5 Comparison with PMID-specific SemMedDB relationships

Because there are no expert-curated gold standard relationships ex-
traction data available for the PMIDs covered in this experiment, a
subset of the computationally derived open dataset, SemMedDB
was used for comparative purposes. The PMIDs for the completed
concept pairs were used to pull SemMedDB annotations specific to
those PMIDs. For example on the PMID 16609705, the following
M2C concept pair: 8086(AAAS gene), D000309 (adrenal
insufficiency) was matched with the following IDs from SemMedDB
C1422135, C0001623, respectively. SemMedDB concept annota-
tions are linked to concept-unique identifiers (CUIs) from the
Unified Medical Language System (UMLS). The UMLS integrates
many biomedical vocabularies and standards (Bodenreider, 2004).
Since UMLS supports many more concept types than M2C, only
UMLS concept types that mapped to M2C concept types were
included in the analysis. For example, SemMedDB concepts like
Language (langjT171) or Bird (birdjT012) would not be included;
however, SemMedDB concepts like Disease or Syndrome
(dysnjT047) and Sign or Symptom (sosyjT184) would both be
included and mapped to the M2C Disease concept. In addition, the
RE module in M2C is not yet connected to the previously described
NER module (Tsueng et al., 2016); hence, the concepts in the M2C
relationship module are purely based on PubTator. Thus, the UMLS
concept types were mapped to M2C concept types based on map-
pings used in the generation of the corpora used for the gene, disease
and drug NER algorithms in PubTator with a few additional map-
pings to suit the expansion of the PubTator concept types (M2C
Relation Extraction concept types) to the M2C NER concept types.
The identifiers for relationships considered complete in M2C were
converted to UMLS CUIs and used to filter an export of SemMedDB
annotations for only relationships involving those CUIs. The seman-
tic types of the SemMedDB subject and objects were mapped to

M2C concept types for comparing relationships within the same
concept type (e.g. gene–gene relationships) versus different concept
types (e.g. gene–disease relationships). The types of concept pairs
were compared between SemMedDB and M2C after concept pairs
in which the majority of users marked a concept as incorrectly iden-
tified (i.e. ‘broken’) or unrelated were removed from the remaining
set of PMIDs.

3 Results

3.1 Contribution distribution, accuracy and aggregation

threshold determination
The relationships between 1009 concept pairs were annotated by at
least 15 M2C volunteers. In total, we collected and analyzed 15 739
annotations from 147 volunteer contributors. As with other crowd-
sourcing systems (Cox et al., 2015), we measured the distribution of
effort by plotting out the contributions and calculating the Gini co-
efficient (Fig. 1A). The Gini coefficient was 0.73 which was compar-
able to what was observed in the disease mentions NER pilot study
(gini ¼ 0.716; Tsueng et al., 2016) and slightly lower than those
observed for several well-known online citizen science projects (gini
range ¼ 0.77–0.91; Sauermann and Franzoni, 2015).

To assess the accuracy of these relationship annotation results,
we compared them to a manually curated subset of the full dataset.
Based on this QC set, the median accuracy per user across all of their
annotations was 0.61 (Fig. 1B), and was affected by NER issues
(Supplementary Fig. S4). To assess how increasing the number of
contributors affected the quality of the aggregate annotations, we
simulated smaller numbers of annotators per document by randomly
sampling from the QC set. When aggregating user responses and
selecting the majority response, the accuracy increases along with
the number of users n up until about six users. Beyond six users, the
median accuracy does not further increase, suggesting that each rela-
tionship task should be annotated by a maximum of six users to
maximize accuracy while minimizing redundancy of work done by
the community (Fig. 1C).

A small subset of users were estimated to have very low accuracy
despite contributing over 10 task annotations–warranting the need
to verify that there were not unaccounted for issues with the data.
Upon manual inspection of two of these outliers, we observed that
these users did not mark any concepts as inappropriately annotated.

Fig. 1. (A) Contribution distribution of the RE task. (B) Each user’s estimated accur-

acy (x) versus the number of tasks that user completed (y). The line illustrates the

median accuracy. (C) Median accuracy with respect to the majority response of an

aggregate of n users. The Q25 and Q75 quantiles are represented by the lower and

upper error bars. The concept toss rate (i.e. concepts marked as broken or inappro-

priately annotated by the NER algorithm) versus accuracy of individual users (D).

The size of the circles in (D) represent the number of total tasks that individual user

contributed, whereas the intensity or value represents the number of that user’s

annotations which could be found in the QC set and, therefore, used for accuracy

estimations
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To investigate the effect of a user’s reluctance to correct incorrectly
identified concepts, we calculated each user’s ‘concept toss rate’ (i.e.
number of annotations they marked as incorrectly identified relative
to number of annotations they submitted) and plotted their esti-
mated accuracy relative to their toss rate (Fig. 1D). Because the ac-
curacy estimates were based on a limited QC set, estimates of a
user’s performance is expected to be less representative then they
had very little overlap with the QC set (less color) as compared with
those who had greater overlap (more intense color). Nonetheless, a
subset of users that had performed many tasks (medium circles)
within the lowest range of accuracy (between 0 and 0.2) also had a
low average rate of tossing out concepts highlighting the effects of
NER quality on Relationship Annotation. Inquiries sent from a few
users suggested that at least some of the error could be attributed to
a lack of guidance on how to prioritize when dealing with multiple
true states. For example, the ‘WD’ from an abstract discussing
tryptophan-Aspartic Acid repeats (PMID 16609705) was incorrectly
annotated by the NER algorithm as a disease (D006527/Wilson’s
Disease). The majority response in this case would be to mark the
annotation as ‘broken’ or incorrect. However, inquiries with our
users have indicated that our guidance here was lacking as a small
subset of our users would reason that ‘WD’ is indeed a disease, even
if it is not a disease in this particular abstract. Therefore, the two
concepts would be treated as not having a relationship by this subset
of users. Further clarification on how to prioritize multiple true
responses could help to improve consistency and performance of RE
across the M2C community.

3.2 Identification of missing relationship types
The relationship annotation options in M2C were based on higher-
level relation properties from an ontology in development that was
started in WebProtege but moved to Wikidata for more open dis-
cussions (https://www.wikidata.org/wiki/User: ProteinBoxBot#
Task_permission_requests). With limited relationship options avail-
able in M2C, qualitative analysis of concept pairs annotated as ‘has
relationship’ or ‘other relationship’ can provide insight into relation-
ships missing from the currently available options in M2C. To iden-
tify missing relationship types, PMID-specific concept pairs
annotated as ‘has relationship’ or ‘other relationship’ were aggre-
gated to obtain the total number of users that marked each concept
pair as having a nonspecific relationship. We sampled up to 25
PMID-specific concept pairs at each voter threshold (K), random-
ized the order of the samples, masked the number of users that
marked it as having a nonspecific relationship and then manually
inspected the relationship. If the relationship between the two con-
cepts was an available option within the M2C system, it was binned
as ‘has available specific relationship’. If either of the concepts were
inappropriately annotated, it was binned as ‘concept broken’.
Common relationships not available in the M2C system were binned
together and new categories were created whenever the relationship
did not fit in with previous categories.

As seen in Figure 2, there is a decreasing number of per-PMID
concept pairs that were marked as having a better response option
within M2C (pink/red bars) as the number of users that agreed with
that assessment increased. Per-PMID concept pairs that were
marked as ‘has relationship’ by a high number of users tended to
genuinely have a relationship not captured by the system. However,
setting the threshold too high increases the risk of missing interest-
ing, nonobvious relationships that are otherwise not captured by
M2C.

Interesting relationships that were missing from M2C’s selection
options included: Resistance/Insensitivity to the gene was associated
with the disease; the disease conferred resistance to the drug; the
drug was altered in the disease; the gene is a marker for inspecting
samples involving the disease; the drug is used in the diagnosis of the
disease; and a mutation in the gene causes a disease that was mis-
diagnosed as the disease according to the abstract (e.g. AAAS gene
as it relates to Cerebral Palsy in an abstract for a case study where
Allgrove Syndrome was misdiagnosed as Cerebral Palsy in the pa-
tient history). Some users also marked ‘has relationship’ when the
text explicitly mentioned the investigation of a relationship between

two concepts without actually revealing the relationship (i.e. ‘we in-
vestigate the relationship between x and y’, without stating the out-
come of the investigation). Concept pairs which had an inconsistent
relationship (such as in case studies) were marked by some users as
‘has relationship’ and ‘has no relationship’ by others (Fig. 3). The in-
consistent relationship was either explicitly described in the text
(e.g. 3 out of 11 patients had mutations in the gene), or implicitly
described (e.g. ‘We present an atypical case of Triple A syndrome
without the expected ACTH-deficiency’). Since users in aggregate
appear to be correctly identifying missing relationships as ‘has rela-
tionship’, we investigated the annotations marked as ‘no relation-
ship’ to understand any rules/guidelines in the system in need of
further clarification.

3.3 Verification of unrelated concepts and identification

of rules in need of improvement
We applied the method used for Figure 2 to PMID-specific concept
pairs that users marked as having ‘no relationship’. Few PMID-
specific concept pairs (each RE task) were marked by at least six
users as having ‘no relationship’; hence, sampling the RE tasks for
qualitative analysis was only necessary for RE tasks with five or less
users agreeing on the ‘no relationship’ response. At K¼6, the num-
ber of different RE tasks that was marked as having ‘no relationship’
drops to only seven; and drops again to less than half of that at
K¼7. At K¼8 or above, we were unable to find RE tasks marked

Fig. 2. Qualitative assessment of a sample of relationships marked as generic rela-

tionship/other relationship by total user counts. In red are ‘has relation’ annotations

for a concept pair in which one of the concepts appear to be incorrect (i.e. broken).

In pink are ‘has relation’ annotations for concept pairs which could be described

with a more specific option. In green are concept pairs with a genuine relationship,

not available as a selection option. In orange are concepts where the relationship in

the text is partial or simultaneously true and false. All other colors indicate other

ways in which the two concepts are discussed together (e.g. purple: gene is a marker

used to study samples from patient with disease, etc.). To further explore these

results, download an alternative interactive visualization of Figure 2, from https://

git.io/fjomt and open it in a browser

Fig. 3. Types of relationships marked as having ‘no relationships’. Red indicates

concept pairs in which one of the two are considered incorrectly annotated. Pink

indicates that an appropriate relationship was available in the system even though

the majority ruled there to be ‘no relationship’. Dark Red are relationships not avail-

able in the system. Orange indicates that the text suggests an inconsistent or partial

relationship. In green are concept pairs in which an attempt to establish a relation-

ship failed (e.g. drug failed to treat a disease). Blue indicates that the relationship is

between a gene or drug and a disease which was misdiagnosed in lieu of the actual

disease. Other types of relationships are in gray. An alternative interactive visualiza-

tion of Figure 3 can be downloaded from https://git.io/fjoqi
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by exactly K users for each level of K above 8, severely limiting the
sample size (Fig. 3).

For the qualitatively inspected tasks–at each value of K that was
below six, a better relationship (generic or specific) existed 20% of the
time. At each value of K of six or above, a better (generic or specific re-
lationship) was not available. As K increases from 1 to 5, the number of
tasks in which a concept should have been marked as inappropriate
decreased from 11 to 3. At K � 6, the number of tasks in which a con-
cept should have been marked as inappropriate was mostly 0. RE tasks
for which a specific relationship exists (but the option is not available)
averaged to make up about a third of the annotations marked as having
no relationship when K was <6. Instances where a drug failed to treat a
disease and, therefore, can truly be counted as having ‘no relationship’
was not observed when at K<5 due to the limited sample availability.
Misdiagnoses accounted for some of the instances of ‘no relationship’
for RE tasks with K � 6 (see Supplementary Fig. S2 for the breakdown
and variety of ‘no relationship’). Based on these results, clarification and
improved guidance is needed for the treatment of abstracts that cover
case studies or clinical trials (in which the relationship may be inconsist-
ent/partial) and for instances where a relationship was suspected, but
found to be untrue such as in a misdiagnosis or failed drug trial.

3.4 Effects of concept distance on relationship

identification
Many semantic and NER text mining algorithms perform optimally
when used in conjunction with text analyzed at the sentence level
(Lou et al., 2017; Muzaffa et al., 2015; Zhu et al., 2018). Limiting
the M2C RE task to concepts that share the same sentence could re-
duce the amount of text contributors would need to read and reduce
the amount of text displayed in mobile devices. However, such limi-
tations would also result in losing the option to identify relation-
ships between concepts in the text that do not appear in the same
sentence. To evaluate the pros and cons of restricting the task to the
sentence-based concept pairs, we looked for relationship annota-
tions of concepts that were not in the same sentence and we
inspected the effects of the distance between concept pairs in a task
on accuracy.

As seen in Figure 4, most concept pairs were less than a sentence
apart. Each green dot represents a concept pair. Its location on the x-
axis represents the number of sentences apart the concept pair appears
to be, while the y-axis represents the estimated accuracy when
inspected with different numbers of voters (n). Multiple synonymous
mentions of concepts increase the likelihood of concept pairs to be
located within shorter distances than farther ones, nonetheless there
were still plenty of relationship identified between concept pairs that
were estimated to be two or more sentences apart. In cases where the
concept distance was not expected to affect the relationship (i.e. one of
the concepts is considered inappropriately annotated), there were still
more concept pairs located closely together in space than farther apart.
Estimated accuracy appeared to be more affected by the number of vot-
ers (n) than by the estimated minimum distance between the concept
pairs. This was particularly visible in the difference observed at n¼15
between concept pairs with a relationship and concept pairs marked as

broken (Supplementary Fig. S3). For concept pairs considered broken,
the accuracy at n¼15 decreases due to the inclusion of annotations
from users uncomfortable with discarding concepts as broken in all
runs. The concept pairs were further subdivided between those marked
as ‘unrelated’ in the QC set to determine if unrelated concept pairs
were more likely to be located farther apart. This was not found to be
the case (Supplementary Fig. S3). Not every annotation from Pubtator
was linked to an identifier. Annotations lacking identifiers could be
synonymous with other annotations lacking identifiers within an ab-
stract, making it difficult to calculate the minimum distance between
two concepts if there are multiple annotations lacking identifiers.

3.5 Comparison with PMID-specific SemMedDB

relationships
Although concept distance is one factor which distinguishes M2C
from automated methods that analyze text at the sentence level, we
wanted to investigate how the relationships annotated in M2C com-
pared with those annotated via automated methods. We pulled sub-
ject–predicate–object triples from SemMedDB and restricted the
SemMedDB data to just the abstracts in common with the M2C
dataset. Some differences in the relations between SemMedDB and
M2C were immediately visible. SemMedDB employs sentence-level
analysis and mines the relationships from these sentences regardless
of concept type resulting in a very different set of relationship anno-
tations as compared with M2C.

In contrast, M2C users are only presented with concept pairs
which are different in type (heterotype), no matter where they may
appear in the abstract. For example, users may be asked about the
relationship between a gene term and a disease term, but never
about the relationship between a disease term and a different disease
term. In addition, SemMedDB has many more entity types than
M2C, and to do a more detailed comparison, we restricted our com-
parison of the two to the entities that were found in common.

As seen in Figure 5, the majority of relationships in SemMedDB
for the abstracts that have at least one subject entity and one object
entity in common with M2C are relationships within the same type
(homotype) of concepts. Only four abstracts contained concept pairs
that appeared to have a relationship in both SemMedDB and M2C.

Fig. 4. The minimum estimated number of sentences between two concepts (x-axis)

versus the average accuracy of the majority response (y-axis) at different voter num-

bers (n) for concept pairs which were not considered inappropriate. At distance less

than 0 are concepts for which no identifier was available and the minimum distance

was not calculated

Fig. 5. Heatmap illustrating the number of relationships identified in each abstract

via SemMedDB, both SemMedDB and M2C (both relations), and just M2C. M2C

only allows relationships between different types of concepts (heterotypic relation-

ships) such as gene–disease (g_d), drug–disease c_d) and drug–gene (c_g) relation-

ships. In contrast, SemMedDB mines for all relationships including relationships

within the same types of concepts (homotypic relationships) such as disease–disease

(d_d), gene–gene (g_g) and drug–drug (c_c) relationships
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Most of the relationships in M2C appear to be gene–disease rela-
tionships, but this is due to the removal of concept pairs which were
marked as inappropriately annotated. Given the differences in rela-
tionship types available in SemMedDB and M2C, we wanted to ex-
plore the potential complementarity between the two. For example,
gene–disease relationships which are likely to be underrepresented
in SemMedDB due to the sentence-level analysis could appear with
greater frequency in M2C. Similarly, broad/nonspecific relationships
identified in M2C could be explained by multinode/indirect (e.g. A
relates to B, B relates to C in lieu of A relates to C) relationships or
other relationships available in SemMedDB but not in M2C.

To explore the potential complementarity of the data from the
two systems, the quality-checked concept pairs were aggregated in
terms of the majority response given per PMID in M2C. The con-
cept pairs were also checked for a direct relationship (i.e. a single
SemMedDB triple with both concepts) and for co-occurrence of the
concepts in the pair (potential indirect relationships) in SemMedDB
(i.e. SemMedDB triples with only one concept in each triple) after
filtering for only relationships within the quality-checked PMIDs.
As seen in Figure 6, concept pairs with specific relationships appear
in many more PMIDs in M2C than in SemMedDB. This difference
is largely attributable to NER differences between PubTator and
SemMedDB.

For example, the concept pair 8086_x_D000309’ (AAAS gene �
Adrenal Insufficiency) was observed in 28 abstracts (Supplementary
Tables S1 and S2), but only six of those abstracts were both entities
part of relationships in SemMedDB. In some cases, these were due
to differences in the way text was annotated by PubTator versus
SemMedDB (e.g. PubTator marking mentions of ‘adrenal insuffi-
ciency’ as mentions of ‘Triple A syndrome’ or ‘Allgrove syndrome’).
In other cases (like ‘8086_x_D009461’: AAAS gene � neurologic
dysfunction), mentions observed in PubTator were missed altogether
in SemMedDB. If each of the concepts in a concept pair were found
in an abstract in SemMedDB, the relationship between the two con-
cepts was not annotated unless the two concepts were in the same
sentence as seen in the case of ‘D003981_x_D012640’ (Diazoxide �
Seizures). This concept pair was observed in PMID: 11916319 by
both PubTator/M2C and SemMedDB; however, because the two
concepts were found in different sentences, a direct relationship be-
tween the two concepts is not annotated in SemMedDB.

The frequency of relationships in concept pairs arising from
M2C may be useful for selecting important relationships in
SemMedDB. Data from M2C can be used to identify relationships
missed from SemMedDB due to sentence-level analysis.
Furthermore, SemMedDB may be useful for clarifying relationships
between concept pairs that users consistently marked as having an
unspecified relationship if the concepts in M2C can successfully be
mapped to those in SemMedDB.

4 Discussion

Improvements in automated RE from biomedical text have been
hampered by limited gold standard corpora and dependencies on
named entity recognition and entity linking. In spite of these limita-
tions, RE data generated from automated methods like SemRep
have been useful for identifying potential prostate cancer drugs
(Zhang et al., 2014a), identifying potential drug–drug interactions
(Zhang et al., 2014b) and identifying the molecular effects of drugs
(Fathiamini et al., 2016) when augmented with other methods or
data sources to improve their quality. Generating datasets for
improving RE algorithms will help to improve their value as a tool
for researchers.

Towards that goal, we found that citizen scientists were willing
and capable of performing RE, and that the relationships they
extracted from the full abstract were different than those obtained
via automated methods like SemMedDB. System-specific restrictions
such as sentence-level analysis in SemMedDB and inclusion of only
heterogeneous concept pairs in M2C contributed to these differen-
ces. Aggregate task performance by the citizen science community
was affected by three primary issues: (i) NER quality issues, (ii)
training and platform issues and (iii) issues with the documents.
Consistent with the literature on information extraction, the quality
of the RE data was affected by the NER quality issues (Li et al.,
2016; Xing et al., 2018) and users who were uncomfortable or un-
willing to discard concepts had lower performance results. NER
quality issues also effectively decreased user throughput on actual
RE since many RE tasks ended up being NER quality checking task.

User discomfort or inability to discard poor NER concepts fur-
ther suggests that there are design and training issues. In aggregate,
the users generally selected the most appropriate response in spite of
the NER issues and limited (and sometimes ambiguous) choice
options in the RE task. Also consistent with the literature, design
issues (Gabriele and Pölz, 2016; Kosmala et al., 2016) such as the
lack of guidance on prioritizing multiple true responses still affected
the performance of the citizen scientists, in spite of multiple itera-
tions in the development of the training and platform in an effort to
ensure high-quality data. Because annotation guidelines can vary
greatly from corpus to corpus, we expect that adherence to the an-
notation guidelines to affect performance more greatly than the edu-
cational/occupational backgrounds of individual citizen scientists.

By investigating concept pairs that had high levels of agreement
for different responses in different abstracts, we identified areas in
need of refinement in terms of available relationship options and
modeling; which led us to identify issues with the documents them-
selves. The M2C community extracted relationships from abstracts
surrounding a unique symptom of NGLY1-deficiency (alacrima),
resulting in a dataset that was homogenous and narrow in scope,
limiting the types of missing and nonrelationships that could be
identified. Furthermore, this document set had a number of case
studies in which the relationship between a pair of concepts could
be simultaneously true and false. Based on our findings, we expect
to be able to raise the community performance on the RE task by
providing more guidance on reviewing the concepts (NER) and pri-
oritizing responses in situations involving multiple ‘true’ responses
and/or simultaneous ‘true and false’ responses. Incorporating add-
itional training or evaluations sets may also help improve volunteer
performance and the downstream data analysis in future iterations
of the project.

Citizen science is a potential avenue for generating new training
datasets for improving automated RE tools, but should not be con-
sidered a cheaper version of crowdsourcing. Citizen science projects

Fig. 6. In spite of the abundance of a specific relationship across multiple PMIDs (as

identified in M2C), SemMedDB may miss many of these instances in the same

PMIDs. On the left are the number of abstracts in which the majority of users ruled

that the concepts had a specific relationship, dark bars is the number of abstracts in

which the majority of users ruled that the concepts had a nonspecific relationship,

and hatched bars are the number of abstracts which the majority of users ruled that

the concepts were unrelated. On the right are the same concept pairs pulled from

SemMedDB restricted to the same set of abstracts as they appear in relationship

with other concepts (light) or in a direct relationship with one another (dark)
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require significant investments in training and community manage-
ment. Resources must be allocated toward incremental user learning
and sustained engagement to ensure the success of both the project
and its participants.

Although preliminary, we demonstrate that citizen scientists can
contribute different types of relationship annotations across three
different types of concepts. In contrast, many RE efforts focus on a
specific type of RE (Ca~nada et al., 2017; Collier et al., 2015; Li
et al., 2016; Xing et al., 2018). This difference makes it difficult to
draw comparisons on contributor performance, but opens up inter-
esting avenues for exploration in RE. In particular, it would be inter-
esting to evaluate the results from this approach with those from
nonspecific (Mintz et al., 2009) and medically tailored (Wang and
Fan, 2014) RE algorithms, or those from crowdsourced efforts
involved in active (Liu et al., 2016) or semi-supervised (Angeli et al.,
2014) learning.
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