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ABSTRACT

The laboratory rat is an important model for biomed-
ical research. To generate a comprehensive rat tran-
scriptomic atlas, we curated and downloaded 7700
rat RNA-seq datasets from public repositories, down-
sampled them to a common depth and quantified
expression. Data from 585 rat tissues and cells,
averaged from each BioProject, can be visualized
and queried at http://biogps.org/ratatlas. Gene co-
expression network (GCN) analysis revealed clusters
of transcripts that were tissue or cell type restricted
and contained transcription factors implicated in lin-
eage determination. Other clusters were enriched
for transcripts associated with biological processes.
Many of these clusters overlap with previous data
from analysis of other species, while some (e.g. ex-
pressed specifically in immune cells, retina/pineal
gland, pituitary and germ cells) are unique to these
data. GCN analysis on large subsets of the data re-
lated specifically to liver, nervous system, kidney,
musculoskeletal system and cardiovascular system
enabled deconvolution of cell type-specific signa-
tures. The approach is extensible and the dataset
can be used as a point of reference from which to
analyse the transcriptomes of cell types and tissues
that have not yet been sampled. Sets of strictly co-
expressed transcripts provide a resource for critical
interpretation of single-cell RNA-seq data.

INTRODUCTION

In the year of the rat (2020), the Rat Genome Database
(RGD) celebrated 20 years of development (1). Those 20
years saw completion of the draft genome (2). Around 90%
of protein-coding genes had an inferred 1:1 ortholog in
humans. Subsequent technology advances allowed the se-
quencing of multiple inbred strains, including several with

disease-associated alleles (3). Szpirer (4) catalogued >350
rat genes where rat lines with natural or introduced variants
provide models for human disease.

Analysis of transcriptional regulation in human and
mouse has been driven by large consortium projects such
as GTEx (5) and FANTOM (6), and there are many
online resources for these species. Multi-tissue transcrip-
tional atlas projects have also been published for other
species, including chicken, sheep, buffalo, pig and goat (7–
11). Although it was once suggested that guilt by associ-
ation is the exception rather than the rule in gene regula-
tory networks (12), the principle is now very well estab-
lished. Genes associated with specific organs, cell types,
organelles and pathways (e.g. the cell cycle, protein syn-
thesis, oxidative phosphorylation/mitochondria) are co-
expressed along with transcription factors that regulate
them (5,6,8,13–18). An extension of the principle of co-
regulated expression is that it is possible to extract signa-
tures of specific cell types, for example the stromal compo-
nent of tumours (19) or resident tissue macrophages (20),
based upon analysis of a large number of samples in which
their relative abundance is variable.

The functional annotation of the rat genome is still a
work in progress. Many rat genes in Ensembl are described
as ‘novel rat gene’ and annotated solely by a gene num-
ber. Transcriptional regulation has evolved rapidly among
mammalian species (21,22). Even where there is 1:1 orthol-
ogy at the level of protein-coding sequence and conserva-
tion of synteny with other mammals, the expression may not
be conserved. Two substantial studies have contributed to
annotation of the rat transcriptome through RNA-seq anal-
ysis of a partly overlapping set of major rat organs (23,24).
Long-read RNA sequencing has also contributed to refine-
ment of rat transcriptome annotation (25). Because of the
extensive use of the rat as a model in biomedical research,
there are thousands of RNA-seq datasets in the public do-
main from isolated cells and tissues in various states of ac-
tivation that could provide an additional resource for func-
tional annotation. By combining random library downsiz-
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ing to reduce sampling bias and the high-speed ‘pseudo-
aligner’ Kallisto (26) to quantify expression, we previously
established a pipeline (7,11) to enable meta-analysis of pub-
lished RNA-seq data. Here, we have used this pipeline to
produce an extended expression atlas for the laboratory rat.
To demonstrate the robustness of the integrated data, we
have carried out network analysis to identify sets of co-
expressed transcripts. The dataset is downloadable and the
pipeline is extensible to allow inclusion of additional data
and regeneration of the network as new RNA-seq data be-
come available.

MATERIALS AND METHODS

Selecting samples for an expression atlas of the rat

To create a comprehensive expression atlas for the rat,
we first downloaded the daily updated NCBI BioProject
summary file from ftp://ftp.ncbi.nlm.nih.gov/bioproject/
summary.txt (obtained 19 July 2021) and parsed it to obtain
all BioProjects with taxonomy ID 10116 (Rattus norvegi-
cus) and a data type of ‘transcriptome or gene expression’,
supplementing this list by manually searching NCBI Geo
and NCBI PubMed for the keywords ‘RNA-seq AND rat’.
BioProjects were selected to extend the diversity of tissues,
cells and states from two existing rat transcriptomic atlases
that analyse gene expression in a subset of major rat tissues
(23,24). For each BioProject, we automatically extracted
the associated metadata using pysradb v1.0.1 (27) with pa-
rameter ‘–detailed’ or by manual review. Metadata for each
BioProject, indicating (where available) the breed/strain,
sex, age, tissue/cell type extracted and experimental condi-
tion (e.g. treatment or control), are detailed in Supplemen-
tary Table S1, which includes both the data downloaded
via the pipeline and additional information retrieved man-
ually from the European Nucleotide Archive record, NCBI
BioProject record and cited publications. For incorporation
into the expression atlas, we required that all samples have,
at minimum, tissue/cell type recorded. Overall, the input to
the atlas comprised 7682 samples from 363 BioProjects.

Quantifying gene expression for the atlas

For each library, expression was quantified using Kallisto
v0.44.0 (26) as described in detail in previous studies on
other species (7–9,20). Kallisto quantifies expression at the
transcript level, as transcripts per million (TPM), by build-
ing an index of k-mers from a set of reference transcripts
and then ‘pseudo-aligning’ reads to it, matching k-mers in
the reads to k-mers in the index. Transcript-level TPM esti-
mates were then summed to give gene-level TPM.

To create the reference transcriptomic index, we
performed a non-redundant integration of the set of
Ensembl v98 Rnor6.0 protein-coding cDNAs (http:
//ftp.ensembl.org/pub/release-98/fasta/rattus norvegicus/
cdna/Rattus norvegicus.Rnor 6.0.cdna.all.fa.gz, accessed
24 November 2019; n = 31 715 transcripts) and the set of
69 440 NCBI mRNA RefSeqs (https://ftp.ncbi.nlm.nih.gov/
genomes/refseq/vertebrate mammalian/Rattus norvegicus/
all assembly versions/suppressed/GCF 000001895.
5 Rnor 6.0/GCF 000001895.5 Rnor 6.0 rna.fna.gz,
accessed 24 November 2019), as previously described (7).

The purpose of the integration was to include transcripts
that had not already been assigned Ensembl transcript IDs
and whose sequence was not already present in the Ensembl
release (under any identifier). RefSeq mRNAs incorporate
untranslated regions (UTRs) and so could encapsulate
an Ensembl CDS. The trimmed UTRs from each mRNA
were generated excluding all sequence outside the longest
open reading frame. In total, the reference transcriptome
comprised 71 074 transcripts, representing 25 013 genes.
Using this reference, expression was quantified for 7682
publicly archived paired-end Illumina RNA-seq libraries.
The BioProjects are summarized in Supplementary Table
S1. Prior to expression quantification, and for the purpose
of minimizing variation between samples, we randomly
downsampled all libraries to 10 million reads, five times
each, using seqtk v1.2 (https://github.com/lh3/seqtk, down-
loaded 4 June 2018). Expression level was then taken to be
the median TPM across the five downsampled replicates.

Within individual BioProjects, median TPM for repli-
cate samples of the same tissue, age or condition was av-
eraged. The final expression atlas is based on the aver-
aged median downsampled TPM per gene for each distinct
set of replicate samples. As in previous projects for other
species (7–11), the full dataset of 585 averaged expression
data from cells and tissues is displayed on BioGPS (28,29)
at biogps.org/ratatlas to enable comparative analysis across
species. The full processed primary dataset and the aver-
aged data are available for download at an Institutional
Repository (https://doi.org/10.5287/bodleian:Am9akye72).
The latter is a comma-separated text file, which can be di-
rectly loaded into the network analysis software used herein
or alternatives such as Gephi (https://gephi.org) or Cy-
toscape (https://cytoscape.org). This file can be easily sup-
plemented by addition of further RNA-seq data processed
in the same way. All scripts for generating the atlas are avail-
able at https://github.com/sjbush/expr atlas.

Network analysis and functional clustering of atlas samples

To examine the expression of genes across this wide range of
tissues and cell types, the expression data were analysed us-
ing the network analysis tool BioLayout [derived from Bio-
Layout Express3D (30)], downloaded from http://biolayout.
org. The same files can be uploaded into the recently devel-
oped open source package, Graphia (https://graphia.app),
which supports alternative clustering approaches and dy-
namic modification of parameters.

The initial analysis used the values averaged by age and
BioProject for each tissue. Subsequent analyses used indi-
vidual values for samples of liver, musculoskeletal system,
cardiovascular system, kidney and central nervous system.
For each analysis, a sample-to-sample correlation matrix
was initially constructed at the Pearson correlation coeffi-
cient (r) threshold necessary to include all samples in the
analysis (shown in the ‘Results’ section and figure legends).
Pearson correlations were then calculated between all pairs
of genes to produce a gene-to-gene correlation matrix of all
genes correlated at r ≥ 0.75.

Gene co-expression networks (GCNs) were generated
from the matrices, where nodes represent either samples
or genes and edges represent correlations between nodes
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above the selected correlation threshold. For the sample-to-
sample analyses (essentially analogous to a principal com-
ponent analysis), an initial screen at the r value that entered
all samples was performed, followed by subsequent analy-
ses with a higher r value that removed outliers and revealed
more substructure in the networks. For each gene-to-gene
analysis, an r value threshold of 0.75 was used for all anal-
yses (Supplementary Figure S1).

For the gene-to-gene networks, further analysis was per-
formed to identify groups of highly connected genes within
the overall topology of the network, using the Markov clus-
tering algorithm (MCL) (31). The MCL is an algebraic
bootstrapping process in which the number of clusters is not
specified. A parameter called inflation effectively controls
granularity. The choice of inflation value is empirical and is
based in some measure on the predicted complexity of the
dataset (31). The inflation value was 1.7 or 2.2 as indicated
and only genes expressed at ≥10 TPM in at least one sample
were included. Gene Ontology (GO) terms and Reactome
pathways were derived from the Gene Ontology Resource
(http://geneontology.org, release of 18 August 2021) using
PANTHER overrepresentation test (PANTHER release of
24 February 2021). The reference list used was R. norvegicus
(all genes in database), the Gene Ontology database was the
release of 2 July 2021 (DOI: 10.5281/zenodo.5080993) and
the Reactome pathway analysis used Reactome version 65,
released 17 November 2020. These resources are all avail-
able at the Gene Ontology Resource (http://geneontology.
org).

RESULTS

Samples in the atlas

Seven thousand six hundred eighty-two RNA-seq libraries,
each with a unique SRA sample accession from 363 Bio-
Projects, were obtained by the pipeline as described in the
‘Materials and Methods’ section and used to create a global
atlas of gene expression. Metadata for the individual Bio-
Projects are summarized in Supplementary Table S1. For
comparative tissue analysis and the core atlas, expression
across libraries was averaged by tissue, age and BioProject.
This reduced the dataset to 585 different averaged samples
of rat tissues and cells summarized in Supplementary Ta-
ble S2A. For a separate analysis of liver, kidney, muscu-
loskeletal, cardiovascular and central nervous systems to
extract tissue-specific co-expression signatures, individual
RNA-seq datasets from within each BioProject were used.

Network analysis of the rat transcriptome

Initially, we performed a sample-to-sample correlation to
assess whether there were likely to be batch effects result-
ing in outlier samples that were unrelated to tissue type. To
include all 585 samples, it was necessary to use a sample-to-
sample r ≥ 0.21. An image of the resulting network graph
is shown in Figure 1. This visualization is analogous to a
principal component analysis. Since BioProjects tended to
focus on one strain, age, sex and tissue/treatment, some
BioProject-specific clustering was expected. However, illus-
trating the robustness of the sampling and downsizing ap-
proach, the same or related tissues analysed in different Bio-

Projects generally clustered together (compare Figure 1A
where nodes are coloured by organ system and Figure 1B
where they are coloured by BioProject). Note, for example,
the tight clustering of liver sample (olive) generated by mul-
tiple independent laboratories. At a more stringent corre-
lation coefficient threshold of 0.7, only 15 samples of rel-
atively low connectivity were removed, but the association
of nodes by organ system rather than BioProject becomes
even more clear-cut (Figure 1C and D). No clear outliers or
BioProject-specific clusters (batch effects) were identified,
so all averaged samples were included in the subsequent
gene-centred network analysis.

The threshold correlation coefficient for the gene-to-gene
network was chosen empirically to maximize the number
of nodes (genes included) while minimizing the number
of edges (correlations between them) (Supplementary Fig-
ure S1). At the chosen correlation coefficient of r ≥ 0.75,
the graph contained 14 848 nodes (genes) connected by
1 152 325 edges. The full set of averaged expression profiles
is provided as a web resource at http://biogps.org/ratatlas.
On this site, a gene name query opens a display of the ex-
pression profiles across all 585 samples, links to rat genomic
resources and a gene wiki connected to data related to the
orthologous human gene. A click on the ‘Correlation’ but-
ton enables the user to define a correlation threshold and to
generate a ranked list of correlated transcripts. This func-
tion can enable confirmation of relationships inferred from
the clustering described below. It can also identify potential
co-regulated transcripts for genes that were excluded from
the network at the r value used for clustering.

Supplementary Table S2A shows all of the clusters de-
tected for transcripts with a minimum expression of 10
TPM in at least one sample. In comparison to previous net-
work analysis of mouse, human, pig, chicken, sheep and wa-
ter buffalo transcriptomes (7–11) at this relatively stringent
correlation coefficient, the much larger and more diverse rat
transcriptomic dataset has a more fine-grained distribution
with >1300 clusters having two nodes or more. In the pub-
lished RNA-seq transcriptional atlas of 11 rat organs (32)
that is included in the current data, around 40% of tran-
scripts were expressed in all organs, in both sexes and at all
development stages. In this larger set of averaged data, re-
flecting the much greater diversity of tissues and isolated
cells sampled here, only 95 genes (0.38%) were detected
above the 10 TPM minimal threshold in all 585 samples.
These are shown in Supplementary Table S2B, with calcu-
lated maximum, minimum and variance. There is an obvi-
ous enrichment for mitochondrial and ribosomal subunit
genes. There is still considerable variation among tissues
and samples, but these genes have potential as controls for
qRT-PCR. Commonly used controls such as Actb, Gapdh,
Tbp and Hprt are also widely expressed but very low or ab-
sent in selected tissues that can be identified in the BioGPS
site.

Significantly enriched GO terms (with associated cor-
rected P-values) for clusters discussed later are included in
Supplementary Table S2C. Consistent with previous analy-
sis, there are clusters that show no evidence of tissue speci-
ficity but are clearly enriched for genes involved in defined
biological functions. For example, clusters 11, 54 and 69 are
associated with the cell cycle, DNA synthesis and repair.
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Figure 1. Sample-to-sample network graph for samples averaged by BioProject, age and tissue type. The 585 averaged RNA-seq profiles generated as
described in the ‘Materials and Methods’ section. A pairwise sample-to-sample Pearson correlation coefficient (r) was calculated. The resulting matrix
is displayed as a network graph using BioLayout. The individual samples (nodes, coloured balls) are connected by edges (lines) that reflect the chosen
r value threshold. For panels (A) and (B), a correlation coefficient threshold of r > 0.21 was used to include all samples. For panels (C) and (D), the
threshold was increased to a more stringent r > 0.7, which removed 15 nodes that make no connection at this r threshold and increased the separation of
the remaining nodes. In panels (A) and (C), the nodes are coloured by organ system: dark red, auditory system; light red, cardiovascular system; salmon,
digestive system; orange, endocrine system; olive, liver; bright green, female reproductive system; teal, immune system; dark teal, integumentary system;
dark green, male reproductive system; black, mixed tissues; light blue, nervous system; dark blue, primordia/early development; purple, renal system; pink,
respiratory system; mauve, skeletomuscular system; and grey, whole body (embryo). In panels (B) and (D), nodes are coloured by BioProject, data being
generated by different laboratories. Note that in panels (A) and (C), where nodes are coloured by organ system, nodes of the same colour cluster together,
whereas there is no pattern of association when the same nodes are coloured based on BioProject in panels (B) and (D).

Cluster 41 (see also Supplementary Table S2D) is made up
almost entirely of histone-encoding transcripts, likely due
to incomplete removal of non-polyadenylated transcripts in
some of the RNA-seq libraries. This cluster is not specific to
any BioProject. The 18 transcripts within this cluster iden-
tified by LOCID also have provisional annotation as his-
tones. Although this cluster is the product of a technical er-
ror, it also highlights the power of the clustering approach
to extract signatures of co-expression.

Table 1 summarizes the expression patterns and biolog-
ical processes associated with clusters of transcripts show-
ing evidence of tissue or cell type enrichment. The largest
cluster of transcripts (cluster 1), >1500 in total, is expressed
almost exclusively in the testis. A smaller cluster 70 is also
testis specific. More than 500 of the transcripts in clusters 1
and 70 are identified only by a LOCID, RGD or other unin-
formative annotation and many more are identified only by
structural motif (e.g. 50 members of the Ccdc family, 35 un-

defined Fams, 20 testis-expressed (Tex) and 15 Tmem pro-
tein genes). The complexity of the testis transcriptome in all
mammalian species has been widely recognized [reviewed
in (33)]. The set of testis-enriched transcripts with func-
tional annotations encodes proteins associated with meio-
sis, sperm differentiation, structure and motility, and acro-
somes. Unannotated genes are likely to be involved in male
fertility. For example, mutation of Dlec1, a putative tumour
suppressor gene, was recently shown to cause male infer-
tility in mice (34). LOC498675 is a predicted 1:1 ortholog
of mouse testis-specific gene 1700102P08Rik, which is ex-
pressed in spermatocytes and is essential for male fertility
(35,36). Other smaller testis-enriched clusters include clus-
ter 29, which contains Sertoli cell markers such as Aard and
Tsx (37,38), cluster 72, which contains Fshr and the essential
testis-specific transcription factor Taf7l (39,40), and cluster
88, which includes the male-determining transcription fac-
tor Sry.
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Table 1. Gene expression clusters from rat tissues and cells

Cluster
number

Number of
transcripts Specificity Index genes and TFs Functional annotation

1 and 70 1514 and 27 Testis Acr, Amhr2, Ccna1, Fshr, Meioc, Spata16, Tnp1/2,
Rec8, Stag3, Nr6a1, Pbx4, Rfx2/8, Sox5, Sox30,
Tcfl5, Taf7l

Spermatogenesis, motility, meiosis

2 1303 CNS neurons Amigo1, Camk2a, Cx3cl1, Gabbr1/2, Grik1–5,
Nfasc, Snca, Atf2, Bcl7a, Cbx6, Hdac11, Hivep2,
Lmo3, Pou6f1, Rfx3, Tcf25

Neurotransmission, neural development

3 583 Non-specific variable Atm, Birc6, Ccnt1/2, Cdk12/13, Ddx5/6, Fancb,
Herc1/2, Hipk1, Arid2, Creb1, Kdm5a, Nf1, Nfe2l3,
Nr2c2, Smad4/5

Misfolded protein/stress response,
tumour suppressors

5 342 Liver Afm, Alb, Apoc1–4, C3, Cfb, Cth, Cyp2a1, F2,
Fetub, Gcgr, Ghr, Hpx, Igf1, Plg, Serpina1, Creb3l3,
Foxa3, Meox2, Nr0b2, Nr1h3/i2/i3, Rxra

Hepatocyte secretory products,
xenobiotic metabolism

6 310 Oocyte Axin2, Bmp15, Bub1b, Ccnb3, Dlgap5, Esrp1,
Eya1/3, Gdf9, Gpr1, Zp1–4, Cbx2, Dux4, Foxn4,
Foxr1, Gata3, Lhx8, Nobox, Sall3, Taf4b, Taf5,
Tead4

Oocyte-specific transcription, zona
pellucida structure, meiosis

7 213 Skeletal muscle Acta1, Casq1, Ckm, Des, Mb, Myh2, Myl1, Pfkm,
Ryr1, Lbx1, Myf6, Pou6f2, Six1, Snai3, Zfp106

Muscle contraction, calcium signalling

8 211 Kidney Aco1, Adm2, Cyp4a2/a8, Klk1, Nox4, Pth1r, Slc5a2 Tubule function, resorption, metabolism
9 194 Oocyte Aurkc, Ccnb1, Magoh, Mnd1, Mos, Nanos2, Ooep,

Brdt, Dazl, Gsc, Nr5a2, Pcgf1/6, Sall4, Sox15, Tcf15,
Tcl1a, Zfp57

Stem cell renewal, meiosis

11 188 Variable, not tissue
specific

Bub1, Ccna2, Cdk1/2, Cenpk, Lig1, Mki67, Orc1,
Pcna, Pola1, E2f8, Foxm1

Cell division cycle, DNA
synthesis/repair, mitosis

12 165 ES cells Dppa3/a4, Dusp10, Fgf17, Fzd6, Slc2a3, Deaf1,
Ferd3l, H2az1, Lefty1, Lmo2, Mybl2, Nanog,
Nkx2–8, Tbx3

Stem cell maintenance

14 124 Intestine Ace2, Cdh17, Cldn7, Defa family, Dgat1, Heph,
Il20ra, Krt20, Lgals4, Muc13, Vil1, Hnf4g

Intestinal barrier function

15 111 Stimulated T cells Cd2, Cd3e, Cd69, Dock2, Il2rg, Ltb, Ptprc, Sla, Was,
E2f2, Ets1, Gfi1, Ikzf1/3, Limd2

T-cell function

17 96 Pineal gland/retina Aanat, Arr3, Asmt, Gch1, Opn1sw, Bsx, Crx, Isl2,
Lhx4, Mitf, Neurod4, Tafa3

Pineal function, melatonin synthesis

18 95 Retina/pineal gland Cnga1, Gabbr1/2, Opn1mw, Pde6a/b/g/h, Rd3,
Rdh8, Rp1, Rtbdn, Bhlhe23, Pax4, Prdm13

Retinal function

19 94 Thymus Ccl25, Cd3d, Cd8a/b, Fas, Rag1, Tap2, Tbata,
Foxn1, Ikzf2, Myb, Pax1, Rorc, Tcf7, Themis

Thymic differentiation, selection

20 94 Liver, kidney Cyp2c23, Dcxr, Fbp1, G6pc, Gk, H6pd, Pck1,
Slc22a1, Slc37a4, Hnf1a/4a, Nr1h4

Gluconeogenesis

21 94 Macrophage,
microglia

C1qa/b/c, Csf1r, Ctss, Gpr84, Hexb, Mpeg1,
P2ry12/13, Siglec5, Tgfbr1, Trem2, Tyrobp, Bhlhe41,
Irf5

Innate immune function, microglial
differentiation

22 90 Skin Cdsn, Csta, Klk9/10/12, Krt4/13/23, Lce3d/e,
Lipk, Ppl, Trex2, Vsig8, Barx2

Skin barrier function

23 87 T cells, NK cells Ccl1, Ccr4/5/8, Cd40lg, Gpr183, Ifng, Il17a, Il2,
Il2ra/b, Lta, Zap70, Batf, Icos, Runx3, Stat4

Activation, cytokine secretion

24 85 Dorsal root ganglia Acp3, Calca/b, Grik1, Htr1d, Nfeh/l/m, Nmb,
Piezo2, Prokr1, Ret, Drgx, Hoxd1, Pou4f1/f2,
Smad9, Tlx3

Ganglion cell differentiation

27, 28 and 33 75, 74 and 65 Skin Adgrf4, Ces4a, Col17a1, keratins, Krtaps, Lce
family, Lgals7, Lipm, Perp, Tp63, Tprg1

Skin barrier function

29 69 Testis Aard, Clec12b, Gk5, Hormad1, Inca1, Shbg,
Sycp1/2, Msh4, Nkx3-1, Rhox8, Tbx22, Tsx

Sertoli cell differentiation, synaptonemal
complex

30 68 B cell Btla, Cd19, Cd79a/b, Cxcr5, Fcna, Gpr174, Ighm,
Jchain, Ciita, Pax5, Pou2af1, Spib, Tlx1

B-cell differentiation, immunoglobulin
production

34 65 Prostate Andpro, Cyss, Dach2, Eaf2, Fut4, Lao1, Lyc2, Mc5r,
Pbsn, Sbp, Semg1, Bhlha15, Creb3l4, Esr2

Prostate differentiation, secretion

35 64 Adrenal Cbr1, Cyp11a1/b2/b3, Cyp1b1, Fdx1, Kcnk3/9,
Mc2r, Pcsk5, Pnmt, Soat1, Star, Ar, Nr5a1

Steroid hormone production, adrenalin

36 and 40 64 and 59 Placenta Ceacam3/9/11/12, Cts7/8, Faslg, Fcrla/b, Ifnk,
Il17f, Il23a, Lcn9, Mmp1, Peg10, Prl family, Wnt8a,
Elf5, Hand1, Rhox9

Trophoblast differentiation, secretion

38 60 Brain Crmp1, Ephb2, Gpc2, Gpr85, Marcksl1, Mdga1,
Mex3b, Dcx, Hmgb3, Lhx6, Mycl, Neurog2,
Runx1t1, Sox11

Neurogenic progenitor cell differentiation

42 56 Variable Bub3, Ddx39a, Dkc1, Srsf2/3, Trip13, Mycn Genotoxic damage response, tumour
suppressors

43 52 Cochlea, middle ear Cd164l2, Chrna9/10, Cldn9, Fbxo2, Grxcr1/2,
Kncn, Loxhd1, Otoa/r/s

Hearing, cochlear function
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Table 1. Continued

Cluster
number

Number of
transcripts Specificity Index genes and TFs Functional annotation

44 51 Blood Cxcr2, Gp9, Gypa, Kel, Pf4, S100a9, Tpt1, Tspo2 Platelets, granulocytes
46 49 Lung Ager, Aqp5, Clec14a, Cyp2a3, Dram1, Fmo2,

Lamp3, Lyz2, Scgb1a1/3a1/3a2, Sftpa1/b/c/d,
Wnt3a, Hopx, Nkx2-1, Smad6, Tbx4

Alveolar type 1 and type II cell function
and secretion

47 and 83 48 and 24 Heart Actc1, Cav3, Fgf16, Myh7, Myl2, Palld, Ryr2,
Tnnc1, Ehd4, Irx4, Nkx2–5, Pdlim5, Tbx20

Cardiac-specific muscle contraction.

48 48 Monocyte,
macrophage

C5ar1, Ccr1, Cd14, Csf2ra, Cyba, Fcgr1a, Itgam,
Msr1, Ncf1/2/4, Nlrp3, Slc11a1

Innate immune function, free radical
production

49 46 Kidney Acre2, Aqp2/3, Cldn8, Insrr, Kcne1, Oxgr1, Foxi1,
Hmx2, Hoxd3

Distal tubule, collecting duct, water
resorption

51 45 ES cells Fgf4, Fgf19, Gdf3, Nodal, Pou5f1, Prdm14 Regulation of pluripotency
55 38 Granulocytes Camp, Ctsg, Elane, Fncb, Mpo, Prg2/3, S100a8 Neutrophil granule proteins
63 33 Brain Aqp4, Edil3, Gpr37/62 Mag, Mbp, Mobp, Opalin,

Plp1, Sema4d, Nkx6-2
Myelination, oligodendrocytes

64 33 Pancreas Amy2a3, Cel, Cela1/2a/3b, Cpa1/2, Ctrc/l Pnlip,
Pnliprp1/2

Pancreatic enzymes, secretion

66 29 Stomach Atp4a/b, Chia, Ctse, Cym, Ghrl, Gkn1/2, Pgc Acidification, digestive enzymes
68 27 Brain, PC12 cells P2rx2, Prph, Th, Vgf, Gata2, Hand2, Phox2a Sympathetic neurons?
77 26 Mast cell?, lymphatic Adgrg5, Cma1, Cpa3, Lilrb3a, Lyve1, Selp, Sirpd,

Slpi, Timd4, Cebpe
82 24 Adipose Adipoq, Fabp4, Lep, Lipe, Lpl, Oxtr, Plin1, Pnpla2,

Retn, Sucnr1, Tshr, Pparg
Fat storage, lipolysis, adipokines

87 21 Lens Cryb family, Cryg family, Lim2, Opn4 Lens structural proteins
88 20 Macrophage Adam8, Cd68, Ctsb, Ctsd, Gpnmb, P2rx4 Endosome/lysosome
90 20 Colon Krt19, Lypd8, Phgr1, Pla2g10, Tspan1, Cdx2 Colon epithelium differentiation,

secretion
92 19 Cerebellum Ca8, Cbln1/3, Chn2, Fat2, Gabra6, Grm4, En2,

Hes3
Purkinje cell differentiation, granule
proteins

95 19 Variable in many
tissues

Adgrl4, Cd93, Cdh5, Dll4, Egfl7, Kdr, Pcdh12,
Pecam1, Tie1, Erg, Myct1

Endothelial cell differentiation

97 19 Cartilage growth
plate

Acan, Clec11a, Col9a1/2/3, Loxl3, Rflna, Alx1,
Nkx3-2

Cartilage structural proteins

98 18 Activated T cells,
thymus

Ccr7, Cd7, Cd96, Heca, Foxp3 Immune cell activation

101 18 Macrophage Acod1, Cxcl10, Il1a/b, Nos2 Response to LPS
106 16 Cartilage, tendon Col2a1, Col10a1, Col11a1/2, Myh3, Ptx4, Zfp648,

Zim1
Cartilage structural proteins

Clusters were generated at r ≥ 0.75 and MCL inflation value 2.2. Selected transcripts encoding transcription factors are highlighted in bold. The full lists
of transcripts in these clusters and the average expression profiles are provided in Supplementary Table S2. Index genes were chosen for illustrative purpose
based upon known function in the indicated tissue confirmed by a PubMed search on gene name AND tissue. Where two cluster numbers are shown, the
two clusters are in the same region of the network graph and show closely related expression profiles.

Clusters 17 and 18 contain transcripts expressed in both
the retina and the pineal gland, both intimately involved in
chronobiology and light sensing. Chang et al. (41) recently
produced an aggregated resource describing the shared and
divergent transcriptomes of these structures. Cluster 17 con-
tains Opn1sw, the pineal-enriched transcription factor Crx
and its target Aanat encoding the rate-limiting enzyme in
melatonin synthesis (42). One unexpected inclusion in clus-
ter 17, enriched in pineal, is the transcript encoding the tran-
scription factor MITF. MITF in humans may be driven by
as many as seven distinct promoters, including one used
specifically by melanocytes. A unique transcription start
site is shared by retinal pigment epithelial cells and pineal
gland. Mitf overexpression in mouse pineal gland relative
to other tissues has been noted previously (42,43) and in
humans also MITF is most highly expressed in pineal gland
(http://biogps.org). However, whereas targets of MITF have
been identified in melanocytes and many other cell types
(44) and mutations impact many complex phenotypes in
mice and humans, there appears to be no literature on its

role in the pineal gland. To illustrate the utility of the data,
in Supplementary Table S2D we have reviewed the annota-
tion of transcripts in clusters 17 and 18. Several novel tran-
scripts of unknown function [e.g. Katnip, also annotated as
LOC361646; KIAA0586 (Talpid3), encoding a highly con-
served ciliary protein associated with the human genetic dis-
ease Joubert syndrome (45); and Lrtm1 (LOC102547963),
a novel membrane protein] are also almost uniquely ex-
pressed in the human pineal gland (http://biogps.org).

Many smaller clusters detailed in Supplementary Table
S2A are enriched in tissues, cell types or activation states
that were not analysed in the existing rat atlases or indeed
in any previous atlas project in other species. They can be
annotated based upon known markers. For example, clus-
ter 145 with 12 nodes contains transcripts encoding ma-
jor secreted products of the pituitary (Cga, Gh1, Fshb, Lhb,
Tshb) and the transcription factors that regulate their ex-
pression (Pitx1, Six6, Tbx19). Cluster 180 contains a sub-
set of known immediate early genes (Egr1, Fos, Jun) mostly
associated with isolated primary cells, and likely reflects cell
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activation during isolation or tissue processing (20). Other
known genes in the immediate early class cluster separately,
or not at all, because they are constitutively expressed by
specific cell types. Similarly, groups of inducible genes in
innate immune cells are all expressed by LPS-stimulated
macrophages but divide into at least three clusters (cluster
101, including Il1a; cluster 112, including Ifit2 and other in-
terferon targets; and cluster 126, including Tnf) because of
expression by non-immune cells.

Other smaller clusters in Supplementary Table S2A
group genes that share functions. The large protocadherin
family of cell adhesion molecules is broadly divided into
the clustered (�, �, � ) and non-clustered (�) subgroups
(46). The � protocadherins are predominantly expressed in
the nervous system and indeed Pcdh1, Pcdh8, Pcdh9 and
Pcdh20 are brain restricted and part of the second largest
cluster (cluster 2). However, cluster 81 includes Pcdhb22
and 16 members of the Pcdhg (A and B) families, which are
collectively enriched in the CNS but also widely expressed in
other tissues. In addition, LOC108353166 within this clus-
ter is annotated as protocadherin gamma-B2-like. Further
members are more brain restricted and grouped together in
cluster 250.

Nine of the 13 known mitochondrially encoded pep-
tides group together in cluster 212, whereas clusters 61 and
76 group nuclear-encoded mitochondrial genes involved in
the TCA cycle and oxidative phosphorylation (as expected,
most highly expressed in heart and kidney). Cluster 102
groups 18 transcripts encoding proteins involved in mito-
chondrial �-oxidation of fatty acids. Several of the genes
in this cluster are mutated in multiple acyl-CoA dehydro-
genase deficiency (also known as glutaric aciduria type II)
and related metabolic disorders (47). One additional gene
involved in this pathway, Etfb, does not form part of a clus-
ter. The web server (http://biogps.org/ratatlas) shows that
Etfb is significantly correlated with many other genes as-
sociated with mitochondrial �-oxidation (e.g. with Etfa at
r = 0.59 and with Etfdh at r = 0.54) but is expressed at lower
levels in certain tissues, including the pineal gland.

Cluster 127, with 14 nodes, contains two markers of
neurogenic cells [Sstr2, Mpped1 (48,49)] and a candidate
regulator, Tiam2 (50), and is otherwise made up of 11
brain-specific transcriptional regulators, each of which has
been shown to be essential for neurogenesis and likely in-
teracts with the others. Clusters 125 and 332 contain 20
genes encoding proteins that have all been implicated as
molecular chaperones, including multiple components of
the TRIC chaperone complex (Tcp1, Cct2, Cct3, Cct4,
Cct5). Cluster 557 with only four nodes contains the oligo-
dendrocyte transcription factors, Olig1 and Olig2, as well
as Sox 8, which has non-redundant function in oligoden-
drocyte differentiation (51). The fourth node in this clus-
ter, LOC103692025, is predicted by the RGD to be an or-
tholog of Lhfpl3, which in mouse is a marker of oligo-
dendrocyte lineage commitment (52). The two calmodulin-
encoding genes (Calm1 and Calm2) are co-expressed (clus-
ter 673) as are three genes involved in cholesterol synthesis
(Fdft1, Hmgcr, Hmgcs1) (cluster 742). Ins1 and Ins2, en-
coding insulin, are co-expressed with pancreatic polypep-
tide (Ppy) (cluster 751) but not with glucagon (Gcg). Al-
though Ppy is normally expressed by rare gamma cells in

pancreatic islets, a recent study indicated that gamma cells
can produce insulin following beta-cell injury (53).

Each of the clusters contains genes that are identified only
as LOCID or other numerical designation. These are ob-
viously the subject of ongoing curation and in some cases
LOCID transcripts duplicate named transcripts in the same
cluster. In Supplementary Table S2, we have included an
update on candidate annotations from the RGD and the
http://biogps.org/ratatlas server provides a link to RGD be-
sides the expression profile. Clearly, the co-expression infor-
mation can provide additional assurance that putative or-
thology relationships with known mouse or human genes
are likely to be correct.

Transcripts that do not form clusters

The first step in network analysis is the generation of a pair-
wise correlation matrix, and for any gene of interest one can
immediately identify others with the most similar expres-
sion patterns. By lowering the inclusion threshold (r value),
it is possible to include a larger proportion of transcripts,
but the associations may become less informative biologi-
cally. For each gene of interest, the correlation function of
the BioGPS site enables extraction of transcripts that are
correlated at lower r values, which may provide some insight
into function. Genes with unique expression profiles across
the samples will not correlate with any other and therefore
will not be included in the network graph. In many cases,
the unique expression profile of a gene of interest arises be-
cause the gene product is ‘multi-tasking’ in different loca-
tions. Figure 2 shows the individual profiles of selected ex-
amples discussed later.

Mutations in FBN1, encoding the extracellular matrix
protein fibrillin-1, are associated with Marfan syndrome
that has complex impacts on musculoskeletal development,
adiposity, vascular function and the eye. Distinct 3′ trun-
cation mutations are associated with a neonatal progeroid
lipodystrophy syndrome (54). Consistent with these pheno-
types, Fbn1 mRNA is highly expressed uniquely in the rat
eye, aorta and cardiovascular tissues and cartilage/tendons
and to a lesser extent in fibroblasts and adipose. There is
also moderate expression in spinal cord and dorsal root
ganglia, lung and testis. Dural ectasia, enlargement of the
neural canal, is a common feature of Marfan syndrome (55).
Expression in the lung may underlie the pulmonary emphy-
sema observed in mouse models of fibrillinopathy (56); pa-
tients with Marfan syndrome frequently show apical blebs
in the lung and are prone to pneumothorax (collapsed lung).
Although Fbn1 does not form part of a cluster at r > 0.75,
the BioGPS correlation function reveals 52 genes correlated
at r > 0.6, mostly associated with mesenchyme and extra-
cellular matrix biology (e.g. Adamts2, Bgn, Col5a1, Loxl1,
Pdgfrb, Tgfb3) (57).

The gene encoding dystrophin (DMD) associated in hu-
mans with mutations causing Duchenne muscular dystro-
phy is also not clustered. As expected, it is expressed in rat
cardiac, skeletal and uterine muscle, but is also expressed
in multiple brain regions at similar levels. This expression
may be related to the neuropsychiatric impacts of the dis-
ease in both affected individuals and mouse models (58). In
this case, FANTOM5 data indicate that DMD has at least
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Figure 2. Gene expression profiles for genes that did not fall within a cluster. Y-axis shows the expression level in TPM. X-axis shows the organ system,
coloured as in Supplementary Table S2. Reading from left to right: light red, nervous system; blue, auditory system; light green, respiratory system; yellow,
cardiovascular system; pink, digestive system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, skeletomuscular system; dark blue,
integumentary system; dark green, immune system; olive, male reproductive system; dark pink, female reproductive system; dark turquoise, primordia/early
development; black, whole body (embryo); and red, mixed tissues.

two independent promoters (6). Nevertheless, several other
genes associated with muscular dystrophy (Sgcd, Lama2,
Dst) are correlated with Dmd at r > 0.6 (see BioGPS site).

RGD1359108 is a clear 1:1 ortholog of human C9orf72,
associated with amyotrophic lateral sclerosis and frontal
temporal dementia. O’Rourke et al. (59) reported that
loss of function mutation in the orthologous gene in
mice did not produce motor neuron dysfunction, but did
lead to macrophage dysfunction, splenomegaly and lym-
phadenopathy. In rat, the ortholog of C9orf72 is expressed
widely in all CNS-associated tissues, most highly in spinal
cord, but not enriched in any isolated CNS cell population.
Outside the CNS, it is most highly expressed in stimulated
macrophages and in testis.

A significant cohort of transcripts is excluded from co-
expression clusters because they have alternative promot-
ers, each with a distinct expression profile. One such gene is
Acp5, encoding the widely used osteoclast (OCL) marker,
tartrate-resistant acid phosphatase. Acp5 forms part of a
small cluster (cluster 179, 10 nodes) that is most highly
expressed in the femoral diaphysis, and includes another
OCL marker Ctsk, osteoblast-associated transcripts (Bglap,
Dmp1 and Sp7) and Ifitm5, mutated in a human bone-
related genetic disease, osteogenesis imperfecta type V. It is
surprising that so few transcripts are stringently associated
with OCL; another small cluster (cluster 174, 11 nodes) that
contains Dcstamp, Ocstamp (Zfp334) and Mmp9 is enriched
in the diaphysis sample but more widely expressed. Expres-
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sion of Acp5 in OCL in mice is initiated from an OCL-
specific promoter (60). Aside from its function as a lyso-
somal enzyme in bone resorption, secreted ACP5 can func-
tion as a neutral ATPase and a growth factor for adipocytes
(61,62). Acp5 mRNA is expressed, albeit at lower levels than
in bone, in rat adipose, lung (where it is expressed highly
by alveolar macrophages), small and large intestine, kidney
and spleen as well as isolated macrophages.

The transcriptome of the rat liver

The downloaded datasets included around 1900 individual
RNA-seq libraries of liver, including whole liver from vari-
ous ages, sexes, inbred and outbred rat strains, disease mod-
els, liver slice cultures and isolated cells. In principle, cluster-
ing of such diverse data could identify sets of co-expressed
transcripts that are associated with cell types, locations or
disease processes that are hidden in the averaged data of the
complete sample set. To test that view, we clustered the en-
tire liver-related dataset without averaging the replicates. As
in the main atlas, the correlation threshold was chosen em-
pirically at 0.75. The cluster list and the average profile of
transcripts in each cluster are provided in Supplementary
Table S3A and informative clusters are summarized in Ta-
ble 2.

It is immediately evident that not all of the samples are
pure liver. Liver cluster 31 contains a set of pancreas-specific
genes, including Cpa1 that overlaps with cluster 64 in the
main atlas. This cluster arises because of random contam-
ination with pancreatic tissue of liver samples in the large
BodyMap project (32). Liver cluster 73 contains transcripts
encoding all of the major secretory products of pancreatic
islets (e.g. Ins1 and Gcg). This cluster was detected only in
liver from a study of enforced activity and sleep depriva-
tion (63). It is not clear from the paper how these samples
could have been selectively contaminated with islet mRNA
unless they are mislabelled. Liver cluster 5 is detected in a
rather random subset of samples from multiple BioProjects
likely also indicating contamination. It includes the pro-
genitor marker, Lgr5, but also various adhesion molecules
(Cldn10/18) and neuroendocrine markers (Chga/b). There
is little evidence of expression of these genes in normal
liver in other species, and at least some of the genes (e.g.
Cckar and Cldn10/18) are highly expressed in pancreas
and/or stomach (e.g. see http://biogps.org). Liver cluster 21
is detected in a single sample, and contains smooth muscle-
associated transcripts (Actg2, Tpm2).

The disadvantage of analysing a single tissue is that most
transcripts do not vary greatly between datasets. In one
sense, this provides a quality control for the efficacy of the
random sampling approach we have used. In this dataset,
the largest cluster by far (liver cluster 1) is relatively consis-
tent with the exception of increased detection in all samples
from a BioProject that profiled liver slices from a bile duct
ligation model, cultured for 48 h in vitro and treated with
various agents (64). It is not clear why this gene set would
be expanded in that cellular system. Liver cluster 1 includes
many transcripts expressed constitutively by hepatocytes.
The most abundant hepatocyte-specific transcript encod-
ing albumin (Alb) is not strictly correlated with any other
transcript presumably reflecting its specific regulation (65).

Table 2. Gene expression clusters from rat liver

Liver
cluster
number

Number
of nodes Description and index genes

1 6292 Widely expressed, high in bile duct ligation
model; growth, protein synthesis,
inflammation, fibrosis, connective tissue

2 752 High in foetal liver; cell cycle, haematopoiesis,
embryonic liver; cyclins, Cdk1, Pcna, Igf2, Hbb,
S100a8/9, E2f2, Klf1, Myb

3 414 General expression, metabolic
regulation; Bcl2l2, Cdk5, Cirbp, Esrra, Foxk1,
Hdac6, Nfe2l1, Nr1h2, Nr2c1, Pias3, Rara,
Six5, Tfe3, Tfeb

4 278 General expression, control of lipid
metabolism; Arid1a, Bcl9, Camta2, Crtc1/2,
Fastk, Foxj2, Foxp4, Hsf1, Mef2d, Rela, Rfx1,
Rxrb, Tp53

5 206 Isolated samples, gall bladder,
neuroendocrine; Cckar, Chga/b, Cldn10/18,
Inha, Krtap1–3, Lgr5, Scg3/5, Nmb, Nts

6 166 E14 liver, fibrosis model; Acta2, Cdh11,
Epha4/7, Fbn2, Gpc2, Myh6/7, Sfrp1/2, Alx,
Cited1, Foxf1, Gata5, Shox2, Tbx15/18, Tgif2,
Twist1/2, Wt1

7 148 Foetal liver, fibrosis, Zucker rats: myeloid
infiltration; Axl, Cd4, Cd68, Clec4a1, Fcgr1a,
Hk3, Lyz2, Ptprc, Irf5, Fli1, Spi1

10 98 Variable expression: proteasome complex,
proteolysis; Anxa7, Ctsd/l, Fbxo22, Prdx1/6,
Psma, Psmb2, Psmc1, Psmd1, Tmx2,
Usp5, Creb3

11 76 Variable, low in foetal liver, periportal
hepatocytes, urea synthesis; Agmat, Ass1,
Ces1a, Cyp2e1, Gls2, Gcgr, Gpt, Hsd17b11,
Pink1, Slc25a22; Mlxipl, Nr1i2

13 67 Variable, low in foetal liver, fibrosis model, fatty
acid �-oxidation; Acat1, Acot1, Crat, Cyp4a1,
Etfdh, Hadh, Pank1, Pdk4, Slc22a5, Vnn1

16 and
70

105 and
10

Variable, cholesterol and fatty acid
syntheses; Aacs, Acaca, Acly, Dhcr7, Fads1/2,
Fasn, Hmgcr, Hmgcs1, Lss, Mvd, Nfe2,
Srebf1/2

18 54 Fibrosis; Angptl4, Col1a1/2, Col6a1/6, Gpc1,
Lgals1, Loxl1, Lum, S100a4, Sfpr4, Etv1, Osr2

24 41 Variable, mast cells; Cpa3, Cpz, Mcpt2, Prss8
25 41 Variable, interferon response; Dhx58, Gbp1/4,

Ifi44, Ifit1, Isg15, Mx1/2, Oas1/2, Irf7
26 41 Variable, mitochondrial; Atp5me/f/g, Cox7ab,

Ndufa2/4/5/6
31 34 One BioProject, pancreas

contamination; Cela1, Cpa1, Klk1, Pnlip, Prrs1
33 32 One BioProject, NK cells; Cd96, Gzma, Klra1,

Ly49, Prf1
34 31 Highly variable, hepatic stellate cell activation?

Acvr1c, Apob, Egfr, Fcgr2b, Klb, Mrc1,
Stab2, Klf12, Nr3c2

43 21 Variable, interferon response; Adar, Ifih1,
Parp9/10/12/14, Irf9

56 12 Kupffer cell; Cd5l, Csf1r, Sdc3, Siglec1, Vsig4
63 10 Endothelial cell; Cd93, Cdh5, Flt1, Nrp1,

Pecam1, Tgfbr3, Tie1, Ets1, Tbx20
65 10 Class II MHC; Aif1, Batf2, Cd74, Rt1-Ba/b,

RT1-Da/b, Irf8, Ciita
66 10 Male-specific; Akr1c12, Cyp2a2, Hsd3b5,

Sult1c3
69 10 Xenobiotic-induced; Ces2a, Gstm2, Ugt1a5
84 9 Female-specific; Akr1b7, Cyp2c12, Srd5a1,

Sult2a1/6, Cux2, Trim24

Clusters were generated at r ≥ 0.75 and MCL inflation value 1.7. The full
gene lists for each of the clusters are provided in Supplementary Table S3A.
Transcription factors are highlighted in bold. Index genes were chosen for
illustrative purpose based upon known function.
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Liver cluster 1 also contains transcripts encoding markers
of hepatic stellate cells (e.g. Pdgfra/b) and the correspond-
ing growth factors (Pdgfa/b/d) as well as more general mes-
enchyme markers (e.g. Vim) and markers of cholangiocytes
(e.g. Krt7) suggesting that their relative abundance is not
highly variable among the samples.

The remaining liver clusters analyse differential devel-
opment and activation states that distinguish the samples
and BioProjects. These clusters are informative and con-
sistent with prior knowledge. Liver cluster 2 is expressed
specifically in embryonic liver and is a complex mix of tran-
scripts reflecting both differentiation of hepatocytes and the
function of the liver as a haematopoietic organ. Accord-
ingly, it contains the cell cycle genes, the foetal growth fac-
tor Igf2, and markers of erythroid (e.g. Hbb) and myeloid
(S100a8/a9) haematopoietic lineages. Liver clusters 3 and 4
are both expressed in almost all liver samples and the level
of expression is not highly variable. Expression of each of
the smaller clusters is much more variable between samples
and BioProjects and known genes within those clusters in-
dicate an association with specific cell types and processes
as summarized in Table 2 and discussed later.

One signature that was not detected is that of the spe-
cialized centrilobular population that is adapted to clear
ammonia generated by the urea cycle. In mice, the rate-
limiting enzyme, glutamate ammonia lyase (also known as
glutamine synthetase, Glul gene), is expressed exclusively in
a band of cells surrounding the central vein. Liver-specific
deletion of Glul leads to pathological hyperammonaemia
(66). In mice, this population of cells co-expressed Rhgb
(encoding an ammonia transporter) and ornithine amino-
transferase (Oat) and was enriched for a number of Cyp
genes (e.g. Cyp2e1 and Cyp1a2). However, in the diverse rat
liver dataset, there was only marginal correlation with other
centrilobular-enriched transcripts.

The transcriptome of central nervous, renal, musculoskeletal
and cardiovascular systems

Each of these systems also contributes hundreds of RNA-
seq datasets including isolated cells and specific regions
or structures. To further examine the utility of these large
datasets for the analysis of cell type- and process-specific
signatures, the data from each of these biological systems
were clustered separately in Supplementary Table S4 (ner-
vous), Supplementary Table S5 (renal), Supplementary Ta-
ble S6 (cardiovascular) and Supplementary Table S7 (mus-
culoskeletal). The clusters are annotated in the tables and
to avoid confusion with multiple cluster numbers, each sys-
tem is discussed separately in Supplementary Text. Broadly
speaking, as in the liver, network analysis of individual or-
gan systems enables a more fine-grained extraction of cell
type-, region- and process-specific expression signatures.

The transcriptome of rat macrophages

The transcriptome of rat macrophages has been analysed
previously based upon microarrays (67) and the RNA-seq
data included here (68). Macrophages adapt to perform
specific functions in specific tissues (20). Cluster 21 (Ta-
ble 1 and Supplementary Table S2), which includes Csf1r,

is most highly expressed in brain and brain-derived cells
and includes transcripts that are enriched in microglia com-
pared to macrophages from other tissues (e.g. P2ry12).
Around two-thirds of these transcripts are contained within
a set of 119 transcripts depleted in all brain regions of
Csf1r-knockout rats (69). Cluster 47 (Supplementary Table
S2) contains transcripts that may be shared with microglia
(e.g. Itgam, encoding CD11b) but are common to mono-
cytes and many tissue macrophage populations. Cell sur-
face markers of other macrophage populations cluster id-
iosyncratically as shown in Supplementary Table S2, indi-
rectly supporting tissue macrophage heterogeneity; Clec4f,
the Kupffer cell marker, is within the liver cluster, Vsig4 and
Marco (cluster 1239), Clec10a , Mrc1 (CD206) and Stab1
(cluster 168), Lyve1 and Timd4 (cluster 79), and Adgre1 and
Clec4a1/3 (cluster 286) are correlated with each other, while
others (e.g. Cd163, Tnfrsf11a, Siglec1) do not cluster at all
at this threshold because each has a unique pattern of ex-
pression in tissue macrophages. Figure 3 shows the profiles
of Csf1r, Adgre1, Cd163, Vsig4 and Mrc1 in the averaged
data.

The network analysis of such a diverse set of cells and
tissues also dissociates known macrophage transcriptional
regulators (e.g. Spi1, Spic, Nr1h3, Mafb, Irf8, Cebpa/b,
Tfec) (20) from macrophage expression clusters because
none of these regulators is entirely macrophage restricted.
For example, transcription factor SPIC in mice is required
for splenic red pulp macrophage and splenic iron homeosta-
sis (70). In the rat, Spic mRNA is most highly expressed in
spleen as expected, but also detected in ES cells and germ
cells (see profile on http://biogps.org/ratatlas). Macrophage
differentiation and adaptation likely involve combinatorial
interactions among multiple transcription factors as exem-
plified by the complex regulation of the transcription of the
Csf1r gene (71).

Whereas macrophages express a diversity of endocytic re-
ceptors, there is not a corresponding large cluster of tran-
scripts encoding endosome–lysosome components includ-
ing the vacuolar ATPase (ATP6v) subunits and lysoso-
mal hydrolases. Transcripts encoding endosome-associated
CD68 and GPNMB proteins are co-expressed with Ctsb
and Ctsd. Although CD68 is often used as a macrophage
marker, it is clearly not macrophage restricted. Most tran-
scripts encoding lysosomal acid hydrolases (e.g. Acp1, Lipa)
are widely expressed and each varies independently.

Csf1r is strongly correlated with other macrophage-
specific markers in cluster 21, consistent with strong
evidence that expression is entirely restricted to the
macrophage lineage in rats as it is in mice (72). It is also de-
tected at relatively high levels in all tissues (around 5–10%
of the level in isolated macrophages) consistent with the
abundance of tissue macrophages detectable with a Csf1r
reporter transgene (72) and with a study of tissue devel-
opment in mice (73). However, expression was also de-
tected in many isolated primary cell samples that are not
meant to contain macrophages. For example, BioProjects
PRJNA556360 and PRJNA552875 contain RNA-seq data
derived from oligodendrocyte progenitors purified using the
A2B5 marker, but this population has Csf1r expression at
similar levels to purified macrophages. Another BioProject,
PRJNA355082, describes expression profiling of isolated
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Figure 3. Gene expression profiles for macrophage-related genes. Y-axis shows the expression level in TPM. X-axis shows the organ system, coloured as in
Supplementary Table S2. Reading from left to right: light red, nervous system; blue, auditory system; light green, respiratory system; yellow, cardiovascular
system; pink, digestive system; turquoise, endocrine system; salmon, liver; grey, renal system; dark red, skeletomuscular system; dark blue, integumentary
system; dark green, immune system; olive, male reproductive system; dark pink, female reproductive system; dark turquoise, primordia/early development;
black, whole body (embryo); and red, mixed tissues.
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astrocytes, but this dataset also has a similar level of Csf1r
mRNA to pure macrophages. Other datasets from various
ganglion cell populations, neuronal progenitor cells, cardiac
fibroblasts and cardiomyocytes and hepatic stellate cells are
clearly highly enriched in Csf1r and other macrophage-
associated transcripts.

CSF1R has two ligands, CSF1 and IL34. In mice and
rats, mutation of the Csf1 gene leads to a global reduc-
tion in many tissue macrophage populations, whereas muta-
tion of Il34 in mice leads to selective reduction of microglia
and Langerhans cells. Based upon the difference in pheno-
type between Csf1 and Csf1r mutations in rats, we specu-
lated that Il34 could be more widely expressed and func-
tional in rat macrophage homeostasis compared to mouse
(68). Neither growth factor forms part of a cluster. Figure 3
also shows the profiles of Csf1 and Il34. As expected, Csf1
mRNA is widely expressed and enriched in isolated mes-
enchymal cells. Il34 is expressed in all brain regions and
isolated cells at similar levels and also in skin. However, in
contrast to mouse, Il34 is expressed at similar levels in many
other tissues, notably aorta, adipose, kidney, lung and testis.

The tissue-specific analysis in Supplementary Tables S4–
S7 enables the extraction of macrophage-specific signatures
from resident populations that have not been isolated and
characterized previously. For example, in the cardiovascu-
lar analysis, a cluster of 184 transcripts containing Csf1r as
well as a smaller cluster containing Adgre1 extracts a sig-
nature of cardiac resident macrophages distinct from blood
leukocytes that form a separate cluster (see Supplementary
Text).

DISCUSSION

Overview

The extraction and normalization of published RNA-seq
data have enabled the generation of a comprehensive rat
expression atlas that samples transcriptional diversity on
a comparable scale to the FANTOM5 data for human
and mouse (6) and massively extends the BodyMap gen-
erated from 11 rat tissues (32). The user-friendly display
at http://biogps.org/ratatlas enables a gene-specific query to
visualize the expression of any gene of interest across the
full dataset and use of the correlation function allows the
identification of transcripts with similar expression profiles.
BioGPS also hosts large expression datasets for mouse, hu-
man, sheep and pig for comparative analysis. The valid-
ity of the downsampling normalization and the utility and
information content of the atlas have been exemplified by
gene-centred network analysis of the averaged core dataset.
The primary data are available for download by users in a
form that enables local regeneration of the networks and
addition of user-generated datasets. In comparison to rat,
there are orders of magnitude more total RNA-seq datasets
from mouse and human cells and tissues in public reposi-
tories. We previously identified and analysed 470 RNA-seq
datasets from mouse resident tissue macrophages alone, ex-
cluding data from cells stimulated in vitro or in disease mod-
els (20). The approach we have used is extensible to even
larger datasets in mouse and human.

Analysis of liver-specific transcriptional network

The assembled dataset includes multiple BioProjects and
thousands of RNA-seq datasets related to the liver, cen-
tral nervous system, heart and cardiovascular system, and
kidney. Each has been analysed independently to identify
signatures of individual cell types and processes (Supple-
mentary Tables S3–S7). To illustrate the ability of network
analysis to extract biologically informative expression sig-
natures, we analysed the liver data in greater detail and con-
sidered other tissue-specific analysis in Supplementary Text.

Liver gene expression is regulated in response to numer-
ous physiological stimuli and chronic disease processes, in-
cluding fatty liver disease. Aside from hepatic parenchy-
mal cells, the liver contains several non-parenchymal pop-
ulations. To identify co-regulated clusters within the liver
transcriptome, we analysed the liver samples separately us-
ing the same GCN approach used for the overall atlas. The
liver is the major source of plasma protein and performs
many functions in energy homeostasis, lipid and protein
synthesis, and biotransformation of xenobiotics and en-
dogenous by-products. The function of the liver depends
on its structure, which comprises small units called lob-
ules, each composed of concentric layers of hepatocytes
expanding from the central vein towards the periportal
vein. The metabolic function of hepatocytes varies along
the periportal–central axis, a phenomenon referred to as
metabolic zonation (74). In principle, if there was significant
heterogeneity in metabolic state or development among the
liver samples, a gene-to-gene clustering might reveal sets
of genes associated with portal versus centrilobular regions
of liver lobules. Halpern et al. (75) performed single-cell
RNA-seq (scRNA-seq) analysis of mouse hepatocyte diver-
sity and concluded that zonation impacts as many as 50%
of transcripts. However, this analysis was limited to 8-week-
old fasted male C57BL/6 mice and does not necessarily cap-
ture coordinated regulation of the metabolic domains, in-
cluding diurnal oscillations and response to feeding (76).
Broadly speaking, the single-cell analysis indicated a peri-
portal bias for major secretory products of hepatocytes and
a pericentral concentration of expression of genes involved
in xenobiotic metabolism.

Network analysis shown in Supplementary Table S3A
and summarized in Table 2 revealed a large co-regulated
cluster (liver cluster 11) that includes Gls2, an archety-
pal periportal marker in mice, other enzymes and trans-
porters associated with the urea cycle (Ass1, Acy3, Ag-
mat, Cbs, Gpt, Slc25a22, Nags) and the glucagon recep-
tor, Gcgr. Cheng et al. showed that glucagon is a regula-
tor of zonation in mouse liver, in that glucagon deficiency
led to reduced expression of periportal-enriched transcripts
(77). There are candidate transcriptional regulators within
this cluster with known functions in hepatic transcriptional
regulation: the xenobiotic sensor Nr1i2 and the glucose-
sensing transcription factor Mlzipl (78,79). A smaller liver
cluster 88 contains additional key enzymes of urea synthe-
sis, Arg1, Cps1 and Gpt2, as well as the amino acid trans-
porter, Slc38a4.

The analysis of the liver samples does not reveal a cor-
responding pericentral expression cluster. Glul, which ap-
pears strictly restricted to a single layer of cells surrounding
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the central vein in mice, rats and humans (74), showed lim-
ited heterogeneity among the liver datasets and did not form
part of this cluster. This suggests that Glul is not highly regu-
lated, whereas other centrilobular-enriched transcripts alter
their expression in response to external stimulus. Another
putative landmark pericentral gene, Cyp2e1, is actually part
of liver cluster 11, redistributed in at least some of the exper-
imental models sampled herein, as observed in a model of
paracetamol exposure that forms part of this dataset. Other
transcripts that are biased to centrilobular also form sepa-
rate clusters because of their independent regulation in re-
sponse to stimulation. For example, Cyp1a2 was identified
as a pericentral marker (74). Liver cluster 54 (Supplemen-
tary Table S3A) is elevated in a dataset from a BioProject
studying the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin,
a potent aryl hydrocarbon receptor (AhR). It includes
the detoxifying enzymes Cyp1a1, Cyp1a2 and Cyp1b1, the
AHR repressor gene (Ahrr) and transcription factor Cdx2,
a known AHR target gene (80). A distinct set of xenobiotic
metabolizing genes, Ces2a, Gstm2 and Ugt1a5, is coregu-
lated in liver cluster 69, and Ephx1, Gsta2, Gsta4, Gsta5
and Gstm1 are co-regulated in liver cluster 146. The pro-
teasome subunit Psmd4 was also pericentral in mice (75),
but it is found in liver cluster 10 stringently co-regulated
as one might expect with numerous other components of
the proteasome complex. Liver cluster 10 contains the tran-
scription factor Creb3 and likely reflects the activation of
the Golgi stress response in a subset of samples or BioPro-
jects (81).

The regulation of lipid metabolism is of particular inter-
est given the current epidemic of non-alcoholic fatty liver
disease. There is some evidence of zonation of fatty acid
metabolism in the liver, fatty acid �-oxidation being en-
riched in periportal hepatocytes and lipogenesis in peri-
central hepatocytes (75), but these pathways are indepen-
dently regulated in this dataset. Liver cluster 13 is highly
enriched for genes involved in lipolysis and fatty acid �-
oxidation. It overlaps the smaller cluster in the full atlas
(cluster 101) but includes many additional genes that have
tissue-specific enrichment (e.g. Acot7 in CNS). Conversely,
liver clusters 16 and 70 comprise enzymes of cholesterol and
fatty acid syntheses and the known transcriptional regu-
lators, Nfe2 and Srebf1/2. Liver cluster 26 contains mul-
tiple genes involved more generally in mitochondrial ox-
idative phosphorylation, including multiple genes encoding
NADH-ubiquinone oxidoreductase subunits. We are not
aware of any heterogeneity in mitochondrial distribution in
the liver.

The various metabolic and inflammatory disease models,
with distinct effects on non-parenchymal cells, enable de-
convolution of signatures of specific cell types and disease
processes. Liver cluster 6, which includes the classical fibro-
sis marker, Acta2 (smooth muscle alpha actin), is elevated
in fibrosis models, but highest in E14 liver, which may in-
dicate that myofibroblast activation in fibrosis recapitulates
the phenotype of embryonic mesenchyme. Liver cluster 18
captures transcripts associated with more advanced fibrotic
disease and includes multiple collagen genes and two candi-
date transcriptional regulators, Etv1 and Osr2. This cluster
also contains the mesenchymal gene Olfml3, which is also
expressed in microglia in the mouse (see http://biogps.org)

and human (82) but is not associated with microglia in the
rat (69). This highlights the problems with assuming that
genes have similar expression patterns and functions across
species.

The fibrosis-associated clusters are clearly separated from
liver cluster 7 that captures the phenotype of infiltrating
CD45+ (Ptprc) myeloid cells in various models. Supplemen-
tary Table S3B summarizes distinct GO term enrichment
for liver clusters 7 and 18. Two sets of interferon-responsive
transcripts including key regulators Irf7 and Irf9 cluster
separately (liver clusters 25 and 43) as do transcripts asso-
ciated with expression of class II MHC (liver cluster 65).
These clusters are separated also from the signatures of en-
dothelial cells (liver cluster 63) and of Kupffer cells, the res-
ident macrophages (liver cluster 56) (Supplementary Table
S3A). The latter cluster includes the transcript encoding
the macrophage growth factor receptor, Csf1r, and many
transcripts that were also downregulated in livers of Csf1r-
knockout rats (83). Clec4f, which is expressed exclusively
by Kupffer cells in mice, and is in the liver-specific cluster in
the extended atlas, is in a separate cluster (liver cluster 95)
with the three C1q subunits (C1qa/b/c), Cfp, Ctss, Pld4 and
Tifab. There is emerging interest in the last gene, a forkhead-
associated domain protein, in immune cell function and in-
flammation (84).

Finally, in rodents, there is a set of transcripts that is ex-
pressed in the liver in a sex-specific manner in part under
the influence of growth hormone (85,86). The male- and
female-specific liver transcriptomes are regulated by differ-
ential expression of specific transcription factors, CUX2
and ONECUT2 in females and BCL6 in males. The major-
ity of samples are from males, but nevertheless liver cluster
66 is excluded from female livers, and liver cluster 84 con-
tains Cux2, Trim 24 and known female-specific transcripts.

The relationship between network analysis and scRNA-seq
for the definition of cell types in tissues

As in the liver, the network analysis of other major or-
gan systems enabled robust extraction of clusters of co-
regulated transcripts often including the transcription fac-
tors that regulate them. In this case, the issue of tissue-
specific promoters becomes less of an issue and genes
that have multiple promoters (e.g. Mitf, Acp5) may form
part of tissue-specific networks highlighting local functions.
The deconvolution of large datasets by network analy-
sis complements scRNA-seq analysis that has rapidly be-
come a dominant approach to analysis of cellular hetero-
geneity. scRNA-seq is not quantitative. Typically, expres-
sion of <1000 genes is detected in each cell and even the
most highly expressed transcripts are not detected in ev-
ery cell (87). The output of scRNA-seq conflates two dis-
tinct types of zero values: those where a gene is expressed
but not detected by the sequencing technology (stochastic
sampling) and those that reflect genuine expression hetero-
geneity. Whereas we can readily separate entirely unrelated
cells that share few markers in scRNA-seq, such as epithe-
lia and haematopoietic cells, the identification of numerous
subpopulations within individual lineages is tenuous at best
(20). A second disadvantage of analysis of isolated cells by
scRNA-seq or total RNA-seq is that cells are inevitably ac-
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tivated during isolation and single cells can have attached
remnants of other cells that contribute RNA (20,88).

Suo et al. (89) described computational analysis of mouse
cell atlas to identify 202 regulons whose activities are highly
variable across different cell types and predicted a small set
of essential regulators for each major cell type in mouse.
We have achieved the same outcome for the rat without the
use of scRNA-seq. The advantage of network deconvolu-
tion as performed here is that one can explore a much wider
diversity of states than can be contemplated with scRNA-
seq and identify more robust co-regulatory modules. Any
proposed pair of markers of a specific cell population de-
fined by scRNA-seq should be strongly correlated with each
other if both are detectable in whole tissue. The prediction
was tested in a meta-analysis of mouse tissue macrophage
populations that failed to support the existence of a spe-
cialized macrophage subset defined from scRNA-seq data
by reciprocal expression of Lyve1 and Mrc1 (20). Herein,
the detailed analysis of the liver data indicates that zona-
tion of the liver is dynamic and individual pathways are
regulated to a large extent independently of each other. So,
the definition of subpopulations of hepatocytes is state de-
pendent. The discussion of other systems in Supplemen-
tary Text casts doubt on the fine-grained definition of sub-
sets of tissue-specific parenchymal/epithelial cells and more
generic glial cells, fibroblasts, endothelial cells, parenchymal
cells and macrophages in many published scRNA-seq anal-
yses. Network analysis reveals regulons that may, or may
not, be restricted to a defined cell population, but which are
clearly linked to function. In that respect, one might reason-
ably question the value of defining cell types as an approach
to understanding biology.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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