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A B S T R A C T

The difficulty of studying small tissue samples and rare cell populations have been some of the main limitations
in performing efficient translational studies of immune mediated diseases. Many of these conditions are grouped
under the name of a single disease whilst there are strong suggestions that disease heterogeneity leads to variable
disease progression as well as therapeutic responses. The recent development of single cell techniques, such as
single cell RNA sequencing, gene expression profiling, or multiparametric cytometry, is likely to be a turning
point. Single cell approaches provide researchers the opportunity to finally dissect disease pathology at a level
that will allow mechanistic classifications and precision therapeutic strategies. In this review, we will give an
overview of the current and developing repertoire of single cell techniques, the benefits and limitations of each,
and provide an example of how single cell techniques can be utilized to understand complex immune mediated
diseases and their translation from mouse to human.

1. Introduction

One of the major hurdles in studying the immune status of human
diseases is the access to informative samples. Only two routes are
available, biopsies for solid organs, and/or blood draw, now also called
“liquid biopsy”. However, both modes of sampling have inherent lim-
itations: is the biopsy from an affected area? Is the biopsy re-
presentative of the entire organ? Will there be affected and unaffected
tissue in the same sample? What control should be used? How many
circulating immune cells are coming from the diseased organ? How
often can the tissue and/or blood be sampled without affecting the
patient?

Additionally, a consistent challenge is the low number of immune
cells recovered from each sample. Up until now, most of the available
and established techniques in immunology relied on bulk, population
analysis that required a large number of cells defined by a limited set of
markers. In very practical terms, biopsies are usually examined by
immunohistochemistry, whereas peripheral blood mononuclear cells
(PBMCs) are enumerated and phenotyped by flow cytometry. While
immunohistochemistry investigates anatomical features, its resolution
is low. Flow cytometry provides single cell resolution but is limited by
the small set of phenotypic markers that can be used; this approach

hinders the analysis of low frequency populations, and is ultimately
only as good as the quality of the reagents used for staining
(Chattopadhyay et al., 2014). In addition, these “bulk techniques”
average out the signal over multiple cells, potentially obscuring rare
disease-specific cells (Chattopadhyay et al., 2014). While bulk genomic
techniques face the same issues, they are additionally limited in their
interrogation of lymphocyte specificity as defined by T cell and B cell
receptors, both of which rely on the co-expression of two chains, heavy
and light for B cells, α and β for T cells, as it loses the information that
pairing provides.

Antigen specificity of T and B cells is one of the most informative
aspects of studying the immune system in cancer and autoimmunity as
it directly links a cell to its function. Most, if not all, functionally in-
formative gene expression observed in activated lymphocytes will be
downstream of idiotypic receptor engagement. To add further com-
plexity, heterogeneity has been observed in the gene and protein ex-
pression of cells within these populations. For resting cells, the steady
state analysis demonstrates variability in single cell RNA expression
that reflects stochastic gene expression, or “allele intrinsic” variability,
as well as “allele-extrinsic” variability (Raj et al., 2006; Wagner et al.,
2016). This variability is often significant because beyond differ-
entiating two cells of the same type and same specificity within the
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same tissue, it may influence their functions in response to a pathogen
(Haque et al., 2017). Finally, it has been shown that in humans, each
patient with an autoimmune disease can exhibit progression of disease
and clinical features that are unique to that individual (Coppieters
et al., 2012; Roep et al., 2012; van der Helm-van Mil et al., 2005).

In this context, single cell analysis permits the interrogation of
samples of small size (biopsies) and the dissection of complex mixtures
of cells found in blood and tissues. The first high throughput single cell
technique to be developed was flow cytometry and while it provides
single cell resolution, it is limited by the small number of parameters
that can be simultaneously measured. The development of flexible and
cheap microfluidic systems a decade ago was a breakthrough for the
single cell field. Microfluidics provided access to a single cell’s tran-
scriptome in a high throughput format and allowed the field to expand
on the pioneering work of Eberwine et al. in 1992. In that particular
study, the authors demonstrated that morphologically similar cells have
distinct patterns of gene expression and that some cells had expression
of several mRNAs that were not found at the population level (Eberwine
et al., 1992; Grun and van Oudenaarden, 2015; Svensson et al., 2018).

Nearly two decades later, and via intermediate steps such as single
cell qPCR, the first single cell RNA sequencing paper and protocol were
published by Tang et al. in (2009,2010) (Tang et al., 2010, 2009).
Within three years, Nature Methods declared single cell RNA sequen-
cing (scRNAseq) the method of the year (Editorial, 2014). As proof of
how far single cell RNA sequencing has come, in 2017, single cell RNA
sequencing is being discussed as a tool to bridge personalized medicine
with cancer diagnostics (Shalek and Benson, 2017).

However, single cell techniques still have important technical issues
that require resolving including the validation of gene expression
analysis at the protein level and the incorporation of spatial distribution
of heterogeneous cell populations in tissues and lesions in single cell
analysis.

In this review, we will briefly discuss in a non-exhaustive way the
main available techniques in the single cell field, highlight the strength
and weaknesses of some techniques, and discuss an approach we have
taken that combines various single cell techniques to examine very
small populations of cells in human biopsies and peripheral blood.

2. Important single cell technologies

While most single cell experiments isolate individual cells via flow
cytometry, a single cell proteomic technique, the term “single cell
analysis” most often refers to quantification of RNA and sequencing of
DNA. To utilize the limited quantities of material extractable from in-
dividual cells, most single cell transcriptomic and genomic techniques
rely on the ability of the polymerase chain reaction (PCR) to amplify a
single, or a few molecules of DNA. Therefore, all approaches will be
necessarily limited by the quality of primer pairs, the variable effi-
ciencies of some primer pairs in multiplex reactions, the necessity to
perform a reverse transcription (RT) step to examine RNA expression,
and the fidelity of the RT and DNA polymerase enzymes. The addition
of linkers for sequencing, bar codes for identification, and molecular
identifiers for normalization can compound these technical limitations.

Currently, single cell genomics techniques start by the isolation of
single cells in reaction chambers, or reaction droplet, using micro-
fluidics instruments, or in open wells in multi-well plates using fluor-
escence-activated cell sorting (FACS). While the latter is reasonably
efficient (> 95%), the former approach is still limited in its ability to
isolate single cells and not doublets; success rates vary from 60 to 90%,
depending on the instrument (Holt et al., 2018).

2.1. Single-cell analysis beyond single cell RNA sequencing

The most common single cell genomics technique is single cell RNA
sequencing (scRNAseq) that examines and quantifies the transcriptional
landscape of a single cell (Linnarsson and Teichmann, 2016; Tang et al.,

2009). Other single cell technologies examine the genome, the epi-
genome, the transcriptome or precisely quantify the expression of a
particular set of genes. We will briefly discuss some of these techniques
and direct the reader to reviews that cover each topic in more detail.

Single cell DNA sequencing studies genomic DNA and holds the
potential of tracking somatic mutations, substitutions, insertions/dele-
tions, copy number variants, and structural rearrangements (Grun and
van Oudenaarden, 2015). One particularly promising use for single cell
DNA genomics is to be able to sequence the entire genome of individual
cancer cells to ascertain the copy number variants and/or the single
nucleotide variants, gene translocation, and the rate of mutation in
driver and non-driver genes within each tumor cell (Gawad et al.,
2016). The determination of this tumor landscape and the intratumoral
diversity, has the potential to tailor treatments that best target each
group of cancerous cells (Gawad et al., 2016; Shalek and Benson, 2017).
Additionally, this same approach can be used to diagnose cancer via the
detection of circulating tumor cells (Gawad et al., 2016). However, for
“liquid biopsy” diagnostic technique to be fully successful, the issue of
whole genome amplification fidelity must be overcome. Currently,
challenges of whole gene amplification include the loss of genomic
coverage that can restrict de novo assembly of a cell genome, allelic
dropout or imbalance, and errors during genomic amplification (Gawad
et al., 2016).

Single cell epigenomics which examines epigenetic changes, has the
theoretical capacity to examine DNA methylation, histone modifica-
tions, as well as changes in conformation and compaction of chromatin.
As many of these techniques rely on antibodies, their sensitivity is
highly linked to the quality of the antibodies used (Cheung et al., 2018).
As a consequence, the number of single cell epigenetic studies are still
limited but increasing. The first single cell epigenomic technique pub-
lished examined DNA methylation in single mouse embryonic stem cells
(mESCs), mouse sperm and mouse oocytes via reduced representation
bisulfite sequencing (Guo et al., 2013). This technique queried DNA
methylation at different sites, such as CpG islands, without averaging
and compared the results to pooled mESCs of different cell numbers
(Guo et al., 2013). A recently described technique, called epigenetic
landscape profiling using cytometry by time of flight (EpiTOF), mea-
sures 8 classes of histone marks and 4 histone variants in immune cell
subsets (Cheung et al., 2018) to distinguish the main cell types and
lineages by assigning patterns of histone marks (Cheung et al., 2018).
As a result of the technical limitations mentioned above, the major
challenge of this technology is to improve the quality of the antibodies
needed and to increase the low number of reads obtained by these
methods that are otherwise robust techniques (Hyun et al., 2015).

Another recently published study paired assay for transposase-ac-
cessible chromatin with sequencing (ATAC-seq) and TCR sequencing at
the single cell level. This study identified epigenomic signatures that
were unique to clonal cancerous T cells (Satpathy et al., 2018). Applied
in conjunction with single cell RNA analysis, single cell epigenomics has
the potential to directly correlate epigenetic modifications to changes in
gene expression (Wagner et al., 2016). Within the past few years,
protocols have been developed to do exactly this including a protocol
called single cell genome-wide methylome and transcription sequen-
cing (scM&T-seq) which interrogates DNA methylation and tran-
scriptome analysis (Angermueller et al., 2016). Additionally, another
protocol has been developed by the same group that integrates chro-
matin accessibility with DNA methylation and transcriptome analysis in
a protocol called single cell nucleosome, methylation and transcription
sequencing (scNMT-seq) (Clark et al., 2018). However, it should also be
noted that single cell epigenomic techniques are still primarily per-
formed by specific labs and are very challenging. As a testimony to this
assertion, no manufacturer has yet released a kit and/or protocols to
perform any of these experiments.

From a technical standpoint, single cell transcriptomics are by far
the most developed single cell techniques to qualitatively and quanti-
tatively measure gene expression, and they can be carried out by most
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laboratories. There are two main types of transcriptomics, the un-
targeted sequencing of cDNA derived from reverse transcribed RNA,
and the targeted evaluation of gene expression by quantitative or digital
PCR after reverse transcription. Both approaches have similar upfront
drawbacks which include incomplete cell lysis, loss of RNA or in-
efficient reverse transcription, cell doublets, over amplification, and
pre-amplification bias (Kolodziejczyk and Lonnberg, 2017; Wagner
et al., 2016).

A more important issue is the loss of the spatial information for each
cell following mechanical and/or enzymatic dissociation of tissues, a
difficulty that can only be circumvented by laser microdissection-cap-
ture of single cells in tissue sections (Gawad et al., 2016; Nagendran
et al., 2018). However, a new protocol called spatially-resolved tran-
script amplicon readout mapping (STARmap) has been developed to
address the loss of spatial information in single cell transcriptomic
analysis (Wang et al., 2018). In this method, tissue is embedded into a
hydrogel matrix and cellular RNA is probed with a gene specific primer
and barcoded padlock probe. Only after both bind to the RNA will there
be amplification, followed by 6 cycles of sequencing to detect each
padlock’s 5 nucleotide code (Wang et al., 2018).

However, the main limitation of all transcriptomics methods is that,
as previously mentioned, they are based on PCR, and therefore in-
herently plagued by gene dropouts, amplification bias, and a given
mutation rate that varies between polymerases. For instance, mutation
rates for reverse transcriptases (RT) vary from 10−4 to 3× 10-5 nu-
cleotides polymerized, depending on the sequence and structure of the
template, while thermostable DNA polymerases (DPol) range from 1 to
10×10-6 mutations per nucleotide added (Menendez-Arias, 2009).
These same enzymes also have variable dynamic ranges. While all RTs
have the potential to reverse transcribe a single copy of RNA and all
DPol amplify a single copy of cDNA, buffer conditions, length of tran-
scripts, complexity of the molecular mixtures, and biophysical para-
meters will all affect the outcome; the detection of single copy RNAs
remains theoretical. Dynamic range issues will primarily affect quan-
titative PCR experiments, especially in a highly multiplexed assay. PCR-
associated mutations will complicate the interpretation of sequencing
data in regions of the genome bearing polymorphisms or complex re-
combination features such as B and T cell receptor sequences.

These experimental bottlenecks can influence the “depth” and limit
the “coverage” of single cell whole transcriptome sequencing with
percentages that rarely exceed 15–50% of the whole theoretical tran-
scriptome (Haque et al., 2017; Marinov et al., 2014). If these numbers
are usually sufficient for the reconstitution of the main metabolic and
signaling cellular pathways, they might not be informative to dissect
discrete circuits that support essential functions such as migration, cell
adhesion, cytokine production, or DNA recombination in B and T cells.

The best way to circumvent these limitations is to complement
scRNAseq with targeted single cell transcriptomics. Directed tran-
scriptomics utilizes single cell quantitative or digital PCR to study a
panel of genes of interest. The benefits of these single cell quantitative
PCR approaches are that they have the same sensitivity, specificity,
reproducibility and range of detection as bulk PCR (Kolodziejczyk and
Lonnberg, 2017), and thus, are very robust. Of course, they face the
same technical challenges as bulk PCR, specifically PCR bias in the
context of high multiplexing.

One other advantage of targeted gene expression profiling of single
cells is that genes involved in one activation pathway can be measured
conjointly and therefore can provide a means to validate scRNAseq
experiments. A number of competing platforms are capable of
achieving very similar results and have been outlined in Table 1.

2.2. The difficulties and limitations of the statistical treatment of scRNA
transcriptomics experiments

For most laboratories, the main challenge of single cell techniques
will be data analysis. The datasets are large, information-rich, and can Ta
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be analyzed by a variety of methods that all utilize sophisticated sta-
tistical tools. However, as is the case for single cell transcriptomics,
currently there is no established gold standard analysis method. Each
manufacturer offers a skeleton set of tools that are rarely sufficient to
produce a comprehensive analysis and/or figures. Each analysis should
be tailored to a particular experiment and/or amplification protocol to
take into account the amplification fold and any biases introduced
during the cell isolation, library preparation and sequencing
(Kolodziejczyk et al., 2015; Vallejos et al., 2017). To try to optimize
reproducibility and improve the comparison of different experiments,
many protocols utilize spike in controls or unique molecular identifiers
(UMI). However, the detection of UMIs and spike-in controls might also
vary between experiments and their utility varies depending on the
sequencing technique utilized (Kolodziejczyk et al., 2015; Wagner
et al., 2016).

In the absence of a gold standard protocol, there are universal steps
that need to be incorporated in a data analysis pipeline (Grun and van
Oudenaarden, 2015; Haque et al., 2017). The first step is to check the
quality of the raw reads via programs like “fastqc” and to remove low
quality data as well as trim UMIs if they have been incorporated (Stegle
et al., 2015). Next, the reads should be mapped to a reference genome
before expression of individual genes can be determined for each cell.
In this process, PCR duplicates and cells with low yields should be re-
moved from the analysis. Cells with low yields are defined as having a
low total transcript level, a low amplification efficiency as measured by
spike in RNAs, or a high spike-in to transcript ratio (Grun and van
Oudenaarden, 2015). Cells with low yields may result from poor cell
lysis, cells that were apoptotic before lysis, RNA loss during handling,
degradation or poor sequencing efficiency. Other quality metrics may
include the expression of housekeeping genes, the number of detected
and aligned genes, and the ratio of aligned genes to aligned mi-
tochondrial encoded genes (Haque et al., 2017; Kolodziejczyk et al.,
2015).

Normalization is the final step in data analysis; it will remove re-
sidual technical variations and is necessary to reveal significant biolo-
gical variations. Multiple options are available for the normalization
procedure. For the quantification of transcripts sequenced by single end
sequencing, using the Transcripts Per One Million (TPM) metric is
sufficient (Grun and van Oudenaarden, 2015). However, for transcripts
that were dual end sequenced, the transcripts per one million reads per
kilobase of transcript (RPKM) is the preferred method of choice (Grun
and van Oudenaarden, 2015). Other quantification tools developed for
bulk RNA sequencing such as Cufflinks, can be used (Tang et al., 2010,
2011). An alternative normalization tool, that is effective at removing
batch effects, is down sampling, an operation that will take an identical
number of transcripts from each single cell library to evaluate gene
expression differences. However, this approach usually reduces the
complexity of the gene expression profile comparison dramatically.

While some companies have started providing computational tools
that integrate the above steps for analysis of transcriptomic data, these
programs do not allow for access to and modification of the code for
tailoring the analysis to your experiment. There are powerful open
source programs that can be utilized but these usually require the help
of an experienced bioinformatician (Haque et al., 2017).

2.3. Validation and proteomics

A rich complement to single cell RNAseq experiments is to try to
position particular cells with unique gene expression profiles within the
spatial context of the tissues from which they were isolated. Techniques
such as single molecule in situ hybridization (smISH) and its multi-
plexed variant called proximity ligation in situ hybridization (PLISH),
allow this translation (Nagendran et al., 2018).

In addition, beyond purely technical hurdles, the correlation be-
tween RNA levels with protein expression, while satisfactory for a large
number of genes, is still highly variable within gene sets and between

cell types (Vogel and Marcotte, 2012). Therefore, it is required for most
gene expression profiles provided by single cell RNAseq, to follow-up
with protein expression validation experiments. It should never be as-
sumed that transcription and translation are linearly correlated; the
number of outliers is large, and striking examples have been reported in
immunology such as for cytokine expression; a notable example is the
expression of IL-4 and IFNγ in NK T cells (Stetson et al., 2003).

Currently, there are two complementary approaches to single cell
proteomics: global and targeted. The targeted approach is usually based
on the detection of proteins by antibody binding; it has been extensively
used and carried out by flow cytometry and mass cytometry (CyTOF)
for detection. Both systems are limited by the number of proteins that
can be interrogated within one experiment. While flow cytometry is
usually efficient to examining 12–15 markers using fluorochrome-la-
beled antibodies, up to 50 markers can be examined in a mass cyto-
metry experiment in which antibodies are labeled with metals and their
natural isotopes (Bodenmiller et al., 2012; Chattopadhyay et al., 2014).
In flow cytometry the need to compensate for spectral overlap limits the
number of fluorophores, and therefore the number of markers that can
be used for analyzing single cells (Hu et al., 2016). New spectral flow
cytometers have a theoretical range of up to 25 colors (Chattopadhyay
et al., 2014). Mass cytometry suffers from being a terminal analysis
method as the cells are atomized and ionized before being interrogated
in the time of flight chamber preventing further analysis via cell sorting
as opposed to classical flow cytometry (Spitzer and Nolan, 2016). Both
approaches also lose the spatial information that might be essential for
the biology or pathology examined, as we have already mentioned for
DNA and RNA studies. This information can only be recovered from
tissues by techniques such as immunostaining or immunofluorescence
which can only examine a very small set of markers at a time. Auto-
mated methods of fluorescent antibody binding-photobleaching-re-
probing on tissues (Chipcytometry) and in situ mass cytometry are
currently being developed to overcome this important limitation
(Dijkstra et al., 2012; Schulz et al., 2018).

Another emerging targeted proteomic technique is the single cell
Western blot (Hughes et al., 2014). Hughes et al. created a 30-μm deep
polyacrylamide gel layered on top of a glass slide. The authors placed
420 microwells in a single block and patterned 16 blocks onto one slide.
A single cell was placed in each well and lysed to allow separation of
the proteins in an electric field like in a regular SDS-PAGE. Following
that step, the proteins were coupled to the polyacrylamide gel and then
probed with antibodies. In this original paper, the authors were able to
probe 11 proteins successively using serial stripping and re-probing.
Further developments could use multiplexing to increase the number of
proteins to be tested (Hughes et al., 2014).

However, the temporal change in protein expression is still missing
from the above techniques. This dimension might be accessible using a
recently developed approach called fluidic force microscopy (FluidFM)
which samples individual cell content by using a hollow cantilever
probe pushed through the membrane by atomic force (Guillaume-Gentil
et al., 2016). FluidFM can recover picoliter volumes of cytoplasm that
can then be used for transcriptomic or proteomic analysis (Guillaume-
Gentil et al., 2016; Zhang and Vertes, 2018). The advantage of this
technique is that the spatial and temporal parameters of the single cells
are known.

In any case, mass spectrometry (MS) remains the dominant method
for unbiased identification and quantification of proteins. In general,
there are two main approaches to single cell MS. The first approach
dehydrates cells and then interrogates the cell by laser or ion beam. The
most obvious limitation of this approach is that the natural state of the
cell is perturbed and the temporal measurement of protein changes is
not addressable (Zhang and Vertes, 2018). Different techniques, with
unique strengths, have been developed including secondary ion mass
spectrometry (SIMS), matrix assisted laser desorption ionization MS
(MALDI-MS) and matrix free laser desorption ionization MS (LDI-MS).
While SIMS can identify low mass species, both MALDI-MS and LDI-MS
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are relevant for the identification of larger molecules such as proteins
(Zhang and Vertes, 2018).

The second approach leaves the cell hydrated but at the cost of
diminished sensitivity and lower throughput (Zhang and Vertes, 2018).
However, it does allow for temporal sampling of the cell. Many of these
techniques utilize sampling techniques such as capillary micro-sam-
pling or metal coated nanospray tips for sampling. Additionally, laser
ablation can also be used to generate charged molecules for the TOF
chamber. In any case, sampling techniques rely on electro-spray ioni-
zation (Zhang and Vertes, 2018).

Another approach called multiple reaction monitoring MS (MRM-
MS) is a more targeted proteomic approach. MRM-MS utilizes standards
from representative chemical classes that have distinct fragmentation
features (Cordeiro et al., 2017). Our lab has utilized this technique to
specifically identify natural, low levels of endogenous α-glyosylcer-
amides (Kain et al., 2014). The detection of known cellular proteins, for
which standards are available and can be used in MRM-MS, is doable
with high specificity and sensitivity; however, the technique is ne-
cessarily limited to a few proteins (Kitteringham et al., 2009).

Ultimately, applied to single cells, MS currently remains technically
very challenging and difficult because of the small sample size and the
rather limited sensitivity of most MS approaches (Armbrecht and
Dittrich, 2017; Zhang and Vertes, 2018).

3. The frontier: determination of single cell function

The function of both B and T cells relies on the engagement of their
idiotypic receptors that link specificity and activation. Therefore, the
sequencing of these receptors, their re-expression, and their functional
testing are required to directly link a particular cell to a particular
antigen. In the context of transcriptomics studies, knowing the identity
of these receptors for each cell tested permits associating a particular
gene expression profile to antigen specificity (Holt et al., 2018).

The success of this approach relies on the ability to sequence both
heavy and light chains, as well as α and β chains from a single B and T
cell, respectively. Various approaches allow the simultaneous sequen-
cing of both chains of each receptor; most utilize a bar-coding technique
in the first round of PCR amplification (Howie et al., 2015). In addition,
indexed sorted single cells can provide cell surface expression profiles
that can be combined with scRNAseq, or targeted gene expression in-
terrogation, to reveal activation pathways, and clonality via TCR se-
quencing. In addition to experimental methods for combining TCR and
single cell RNA sequencing, a computational tool has been developed to
reconstruct full length TCR sequences from single cell RNA sequencing
data (Stubbington et al., 2016). Another advantage of combining TCR
and transcriptomic data is that the re-expression of TCR or BCR re-
ceptors using retroviral vectors provides the opportunity to test func-
tion in vitro after re-expression in a TCR negative cell line such as
BW5147.3, or in vivo after transduction of splenocytes or bone marrow
derived precursors to produce retrogenic animals (Holst et al., 2006).

These techniques are powerful but remain under-utilized due to
their costs and time consumption. In B cell biology, the HIV field has led
the effort by re-expressing a large number of HIV-binding antibodies
from patients and testing their neutralizing ability (Scheid et al., 2009;
Tiller et al., 2008; Walker et al., 2009). In the T cell field, the first single
cell TCR sequencing coupled with limited transcriptional profiling dates
to 2014 and few publications have followed (Han et al., 2014). A recent
study reported the characterization and antigen specificity of four pa-
tient derived tumor infiltrating CD8 lymphocytes using this approach
(Gee et al., 2018). The very limited number of cells that could be uti-
lized in this large study is the result of the remaining bottleneck in B
and T cell characterization: the identification of the appropriate an-
tigen, especially for T cells (Corbett et al., 2014; Keller et al., 2017;
Walker et al., 2009).

4. What single cell techniques have illuminated about immune
populations and sub-populations

The immune system is a panoply of diverse cell subtypes that
communicate with each other and with parenchymal cells, migrate in
and out of different tissue environments, help maintain tissue phy-
siology and address or mediate tissue pathology. Understanding the
interactions of diverse immune cells with each other, with tissue re-
sident immune cells, and with parenchymal cells, is important to un-
derstand how they function in homeostasis and in disease. Given that
immunologists have historically interrogated the diversity of immune
cells at the single cell level via flow cytometry, it seems fitting that they
pioneered other single cell techniques (Giladi and Amit, 2018).

To get a better sense of immunocyte development and function,
many single cell studies have analyzed immune cell types and subtypes
via scRNAseq (Gaublomme et al., 2015; Paul et al., 2015). Detailed
reviews of their findings can be found elsewhere (Cheng et al., 2017;
Giladi and Amit, 2018; Papalexi and Satija, 2018; Wagner et al., 2016).
However, there are two major findings from single cell papers that
should be highlighted: population heterogeneity and modules of gene
expression.

4.1. Understanding population heterogeneity between and within cell types

One of the first studies to use scRNAseq, Jaitin et al, tested the
hypothesis that sequencing bulk population of cells sorted by pre-de-
fined markers was insufficient to take into account immune hetero-
geneity and plasticity while single cell RNA sequencing could more
adequately define distinct cell populations (Giladi and Amit, 2018;
Jaitin et al., 2014). The example they give is that dendritic cell (DC)
populations have been parsed and organized by morphology, function
and cell markers and yet the populations identified with this approach
still retained in vivo functional heterogeneity. To test this hypothesis,
the authors isolated single mouse splenocytes and profiled their tran-
scriptome. Using hierarchical clustering, among other computational
tools, they found that the transcriptionally distinct groups overlapped
with previous transcriptional profiles of classically defined hemato-
poietic cell types (Giladi and Amit, 2018; Jaitin et al., 2014; Papalexi
and Satija, 2018).

In another study, the single cell transcriptome level changes in bone
marrow derived DCs (BMDCs) stimulated with LPS were examined. Sets
of genes were bimodally expressed, suggesting functional heterogeneity
in the BMDC population (Shalek et al., 2013, 2014). This conclusion
was reinforced when the authors were able to identify early responder
DCs that upregulated their gene expression sooner than other DCs, and
were critical in the coordination of the response of the late responder
DCs (Papalexi and Satija, 2018; Shalek et al., 2013, 2014). This het-
erogeneity between cell types and within individual cell types has been
found in various T cell populations such as Th17, and NKT cells as well
as in the developmental hierarchy of myeloid progenitors (Cohen et al.,
2013; Gaublomme et al., 2015; Paul et al., 2015).

4.2. Modules of gene expression

In addition to exposing sub-population heterogeneity, scRNAseq has
been able to reveal modules of gene expression, an important con-
ceptual advance. For example, a set of 100 genes including a number of
anti-viral genes most likely controlled by Irf7 and Stat2, were bimodally
expressed within BMDCs and allowed to define two distinct populations
(Papalexi and Satija, 2018; Shalek et al., 2013).

Similarly, scRNAseq of Tregs revealed that all Tregs expressed a
core set of genes that were similar over all three definable clusters of
Tregs. However, beyond that core set of genes, it appears that some
upregulated genes in Tregs were specifically associated to tissue re-
sidence and function (Zemmour et al., 2018).

What these studies confirmed at the single cell level and in granular
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details is the inherent plasticity of T cells (Giladi and Amit, 2018;
Papalexi and Satija, 2018; Shalek et al., 2013, 2014). Further, single
cell studies will likely aid our understanding of the signaling pathways
that support immune plasticity and its role in physiology and pa-
thology.

5. An approach we have taken

While many groups have used single cell methods to decipher the
complexity of immune cells and their lineages, fewer have used them to
understand pathways leading to disease; the exception is in cancer
biology where the approach has been taken to define lineages and
subtypes in tumors and tumor immune infiltration (Li et al., 2017;
Papalexi and Satija, 2018; Zheng et al., 2017).

Our laboratory has focused its interest in understanding the role of
the immune response in autoimmunity and in chronic inflammatory
diseases. Given that our focus is to identify and define molecules and
signaling pathways that can be targetable therapeutically, we adopted
single cell approaches to address the low number of cells that are often
isolated from human blood and biopsies. Most of our studies have been
focused on T cells and have been built on the same stepwise strategy: 1)
use an MHC tetramer to access antigen-specific T cells, 2) profile the
main T cell activation pathways by targeted transcriptomics, 3) confirm
this result by whole scRNAseq and eventually discover additional
pathways in the process, 4) sequence αβ TCRs and re-express pairs in
hybridoma cells to confirm specificity, 5) assign a cell surface pheno-
type, a transcriptional profile, and a TCR usage to a single cell (Fig. 1).
This information can then be used and expanded to evaluate the precise
role and pathogenicity of T cells in disease. Because the same experi-
ment can be carried out in animal models and humans, this approach is
a remarkable tool for translational studies. Below we will briefly discuss
one of these examples that we presented at the CD1-MR1 International
workshop.

5.1. The role of MAIT cells in ulcerative colitis

Ulcerative colitis, one of two major forms of inflammatory bowel
diseases along with Crohn disease, is a chronic inflammatory condition
that localizes to the colonic mucosa (Ungaro et al., 2017). While its
etiology is unknown, it is currently thought that an environmental
trigger in individuals with genetic predisposition leads to a self-re-
inforcing inflammatory process that damages the mucosa leading to

pain, bleeding, and colon resection in the most severe cases (de Souza
and Fiocchi, 2016; Ungaro et al., 2017).

Based on histologic evidence, it is believed that T cells play an
important role in UC pathogeny, but no particular T cell has been di-
rectly implicated (Ungaro et al., 2017). We have focused our attention
on one T cell subtype that seems uniquely suited to participate in UC;
the mucosal associated invariant T (MAIT) cell. MAIT cells are innate
like CD8 T cells that recognize vitamin B2 derivatives in the context of
MR1, a major histocompatibility complex (MHC) class 1b molecule
(Ussher et al., 2014). The supply of vitamin B2 in humans derives from
the microbiota with a majority of bacteria competent for the production
of riboflavin (Ussher et al., 2014). MAIT cells are enriched in mucosal
tissues, especially the lung and the colon (Kurioka et al., 2016). Upon
activation, they can release pro-inflammatory cytokines such as IFN-γ,
TNF-α, and IL-17, one of the most important tissue homeostasis cyto-
kines in the gut (Ussher et al., 2014).

To add to the circumstantial scenario that could link bacteria, MAIT
cell activation, and mucosal damage, the efficacy of anti-TNF-α therapy
increases the suspicion that MAIT cells are implicated in disease pro-
gression (Neurath, 2017). In addition, it has been shown in two studies
that MAIT cell frequency while reduced in the blood of patients, com-
pared to the normal population, were increased in the UC lesions (Haga
et al., 2016). However, the direct evidence that could link MAIT cells
and disease is lacking.

We hypothesized that gene expression profiles of MAIT cells in in-
flamed lesions would be different from MAIT cells residing in adjacent
normal tissue and surmised that gene expression pathway mapping
could lead to a precise placement of MAIT cells in the pathology of UC.
The overall design of the study consisted in examining single MAIT cells
of UC patients in blood, inflamed and uninflamed regions of the colon,
after MR1 tetramer cell sorting and transcriptomics.

With classic techniques, we confirmed that MAIT cells were reduced
in the peripheral blood of UC patients, as a percentage of peripheral
blood CD3+ CD8+T cells, compared to normal blood donors, while
MAIT cells had an increased frequency in inflamed colonic mucosa
compared to patient matched normal colonic mucosa (Fig. 2).

The targeted gene expression profiling of 96 genes covering homing
and adhesion receptors, cell surface activation markers, cytokines, and
activating and inhibitory signaling molecules, was performed on iso-
lated MAIT cells from each tissue compartment using the Fluidigm
Dynamic Array. The data was first analyzed using the manufacturer
software package, and then using dimensionality reduction tools such

Fig. 1. An integrated workflow to identify dif-
ferentially regulated genes and their protein
expression. Our laboratory utilizes a single cell
workflow, integrated with conventional im-
munology techniques, to sort disease specific
cells, identify dysregulated genes and confirm
protein expression from patient samples. Cells
are isolated from blood via ficoll, and tissue via
enzymatic dissociation. Single cells are indexed
sorted via FACS. Pre-amplified cDNA libraries
were created with pooled primers for 96 genes,
for analysis by single cell qPCR, as well as
primers for all αβ TCR pairs. Gene expression
profiling is assessed utilizing the Dynamic
Array, a microfluidic platform, and the
Biomark (Fluidigm). TCR sequencing libraries
are pre-amplified utilizing Fluidigm’s Access
Array, while sequencing is performed on an
Illumina MiSeq. A C1 library preparation
system is used, post tetramer coupled FACS
sorting, for pre-amplification of single cell

transcriptomes that are intended for Illumina sequencing. Validation experiments are performed by mass cytometry, classic flow cytometry or multispectral flow
cytometry. Our approach differs from other single cell studies in that we have chosen to study particular cell types, isolated from various tissues, via single cell
transcriptomics. This approach provides the antigen specificity, gene expression profiling and protein expression for each cell. In contrast, many other single cell
studies immediately start with scRNAseq of bulk isolated cells from complex tissues such as the spleen or bone marrow.
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as tSNE and k-means clustering. This first layer analysis demonstrated
that blood and tissue resident MAIT cells could be transcriptionally
differentiated from each other (Fig. 2). CCR2, CCR1 and CCR5 were
upregulated on blood MAIT cells whereas NF-kB, Nur77 and ICOS, as
well as IRF4 and ZEB2 were upregulated on colonic MAIT cells, sug-
gesting local TCR stimulation. A small number of genes was also dif-
ferentially expressed between inflamed and normal colonic mucosal
MAIT cells. These transcriptional signatures will be confirmed by an-
tibody staining and cytometry analysis.

Targeted gene expression analysis was coupled with paired TCR αβ
sequencing which showed differences in β chain usage between normal
and inflamed tissue on the first set of patients examined. This targeted
transcriptomic approach identified cellular heterogeneity and as these
studies are expanded to larger groups of patients to reach statistical
power, MAIT cells from lesions and normal tissues will also be in-
vestigated and compared using scRNAseq, and other complementary
single cell techniques, to dissect the unique features and spatial re-
lationships of MAIT cells present in damaged tissue (Fig. 3).

6. Conclusion

In this review, we have discussed the different techniques available
in single cell analysis, highlighted the strengths of some techniques to
uncover intra- and intercellular heterogeneity and the difficulties in
single cell data analysis. Most importantly, we have made the case for

integrating a graded, focused single cell methodology into translational
studies to better parse the complexity of the immune response as well as
to optimally utilize small amounts of tissue obtained from patients.
Utilizing tetramer sorted cells and targeted transcriptomic analysis, we
have demonstrated that MAIT cells in different tissue compartments
express specific chemokine receptors and different activation genes.
Paired with single cell TCR sequencing, we have also been able to de-
monstrate differences in clonality of MAIT cells in inflamed, uninflamed
and blood MAIT cells.

Additionally, we have demonstrated how this integrated single cell
approach can be used to isolate low frequency, disease specific T cells
from the blood of T1D patients and demonstrate that only a fraction of
these cells has an activated gene expression profile. We anticipate
profiling more cells, as well as patients, via targeted and unbiased
transcriptomic techniques will reveal specific pathways that not only
will be targeted for treatment but also utilized to improve the specificity
and sensitivity of T1D diagnosis.

With increased development and refinement, single cell approaches
should be able to bridge translational and basic sciences with the ulti-
mate benefit of providing new targets for diagnosis and therapy.
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