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Viewpoints

The exponential increase in Big Data generation combined 
with limited capitalization on the wealth of information 

embedded within Big Data has prompted us to revisit our 
scientific discovery paradigms. A successful transition into 
this digital era of medicine holds great promise for advancing 
fundamental knowledge in biology, innovating human health, 
and driving personalized medicine; however, this will require 
a drastic shift of research culture in how we conceptualize 
science and use data. An e-transformation will require global 
adoption and synergism among computational science, bio-
medical research, and clinical domains.

Overview of Big Data Science Research
A scarce number of scientific investigations have innovated 
clinical diagnosis, prognosis, and therapeutics, despite de-
cades of research and enormities of National Institutes of 
Health (NIH)–funded research dollars.1,2 This situation re-
quires a global reassessment of whether linear thought pro-
cesses and reductionistic approaches alone can describe 
biological processes in a way that translates to valuable infor-
mation on human systems. Information gleaned from popula-
tion science using large Big Data data sets has perpetuated a 
shift in the paradigm of how we define and investigate health 
and disease in the individual patient.3 We are recognizing the 
profound value in unorthodox data types and in the integration 
of diverse data to describe individuals to sufficient depths for 
discerning clinical outcomes. Biomedicine, along with other 
fields, has been awakened and awed by the digital wave of 
major corporations such as Google and Amazon, who have 
revolutionized the Internet roadmap through developing and 
refining sophisticated data analytics platforms to accurately 
describe individual human behavior.4 The reality in biomedi-
cal science is that there are zettabytes of high-quality data 

sitting idly on servers and in cloud infrastructures, and an 
abundance of biomedical knowledge lies hidden within, yet 
only a small fraction of this wealth has been harvested. There 
is an immediate need for data science to penetrate every area 
of biology, and the future of biomedicine rests on our collec-
tive ability to transform Big Data into intelligible scientific 
facts and knowledge.

The inception of the Big Data to Knowledge (BD2K) 
Initiative is a testament to the foresight of the NIH and our 
community (http://bd2k.nih.gov/). Revolutionary changes are 
occurring in every area of biology, including cardiovascular 
medicine, on how diverse data types are accessed, extracted, 
organized, integrated, and modeled, and how they affect ba-
sic science investigation and clinical care alike. It has become 
increasingly apparent that Big Data are everywhere and affect 
the global population in everyday life, through activities as or-
dinary as Internet shopping or as advanced as retail genome 
sequencing. Enthusiasm extends from the White House and 
major scientific organizations to laypersons and social media. 
Federal resources have been allocated to support national ef-
forts in harnessing the enormous power embedded within Big 
Data and to advance biomedicine. NIH Centers of Excellence 
(COE) have been established to drive a transformation in the 
research culture, addressing data science challenges in an array 
of disciplines including cardiovascular medicine (http://bd2k.
nih.gov/FY14/COE/COE.html). A significant effort is commit-
ted to shift the paradigm of scientific progress from the du-
plication and fragmentation of efforts across many competing 
groups to a synergistic accumulation and integration of unified 
community efforts in Big Data science. This reframing requires 
innovations aimed toward increasing the interactivity of and 
communication with Big Data data sets, as well as bridging 
the gap between layperson/patient and professional domains.

Data Science Promise for Supporting 
Cardiovascular Investigations

What is data science? Data science can be defined as the pro-
cess of extracting, inferring, and validating knowledge from 
data sets that are acquired in a broad, minimally user-biased 
fashion. Data science builds tools and enhances access of da-
tasets for investigators. Our vision of Big Data science is for 
it to support and to benefit the cardiovascular community at 
large. We do not see it as taking the place of fundamental re-
search; on the contrary, we see it as synergizing with funda-
mental research. Many of the data science tools are being built 
to support individual investigators that conduct hypothesis-
driven research. These include Omics data analysis tools, as 
well as text mining tools, and annotation pathway tools. Data 
science is data-driven, tool-driven and user-driven, rather than 
hypothesis-directed (Figure 1).
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Data
Data are the currency of data science. The Big in Big Data 
describes not only the size or volume but also the potential 
of the data to (1) be useful and reused, (2) accumulate value 
over time, and (3) innovate a multidimensional, systems-level 
understanding. Importantly, these features are inversely pro-
portional to user bias. Omics datasets, for example, are great 
examples of Big Data, in that global profiles of biomolecular 
features (eg, metabolites and proteins) are acquired using un-
biased methods of detection (eg, mass spectrometry). There 
are of course physiochemical constraints of acquisition tech-
nologies that introduce instrument bias, but in general, they are 
unbiased in that they discern features of biomolecules based 
on a least common denominator—molecular mass. Although 
this type of data set may initially be collected for biological 
inquiries of narrow focus, Big Data datasets are amenable to 
repurposing and reuse to answer a myriad of other biological 
questions.

Data exist in innumerable, noncommensurate formats pro-
hibiting interoperability. Some data exist as unstructured or 
unlinked data (eg, gene, disease, or drug data) that are not in 
a format readily amenable to computational analyses. For ex-
ample, >1 million new articles are indexed in PubMed every 
year (1 every 30 s) and the knowledge is almost completely 
unstructured, making information access overly time-consum-
ing, incomplete, and void of learning/memory. Big Data are 
thus in large part inaccessible, which can be because of this 
unstructured nature or other issues such as inadequate data 
descriptors (metadata) or data privacy ethics. A notable ex-
ample is patient electronic health records,5 which contain a 
wealth of largely unstructured clinical information. Accessing 

these data requires substantial changes in the clinical health-
care systems, and in how healthcare professionals are man-
aging unstructured knowledge. Clinical data are not the only 
data that are inaccessible; most basic science investigators are 
hesitant to practice open data science for reasons such as the 
risk of data misuse by other parties and lack of data sharing 
incentives. Top-tiered journals, such as Nature have aimed to 
rectify the situation by creating journals like Scientific Data, 
a peer-reviewed, open-access publication for detailed data de-
scriptors aimed at enhancing data set reuse (http://www.na-
ture.com/sdata/about). However, widespread change requires 
a paradigm shift in research culture at all levels. To this end, 
the Biomedical and healthCAre Data Discovery and Indexing 
Engine Center led by Lucila Ohno-Machado at the University 
of California at San Diego has been awarded the NIH BD2K 
Data Discovery Index Coordination Consortium, which has 
been tasked with developing incentives, policies, and tools for 
data sharing and data discovery. Moreover, the NIH BD2K 
COE at Stanford University led by Mark A. Musen is develop-
ing innovative computational strategies to standardize meta-
data across all areas of biomedical science. For data science 
to be successful in the biomedical field, data and descriptive 
metadata must be carefully procured and transformed into an 
open and common currency; essential to this process is sys-
tematic security measures (eg, proper deidentifications) for 
protecting patient privacy.

In this regard, cardiovascular medicine has been highly 
fortunate to receive support and leadership from the NIH 
(eg, National Heart Lung and Blood Institute and National 
Institute of General Medical Sciences; both are global leaders 
in data science). The National Heart Lung and Blood Institute 
has supported many large cohort studies for decades (http://
www.nhlbi.nih.gov/research/resources/obesity/population), 
including, for example, the Jackson Heart Study and Multi-
Ethnic Study of Atherosclerosis. The National Institute of 
General Medical Sciences has supported the development 
of novel tools for use in data science (http://www.nigms.nih.
gov/Research/Pages/ResearchResources.aspx), including the 
Human Genetic Cell Repository, Lipidomics Gateway, and 
Protein Data Bank. These high-quality data and tools have 
provided virtually inexhaustible resources for future data sci-
ence-driven discoveries.

Tools
The technological platform of data science is driven by in-
novations in software tools and computational models; these 
new tools and models comprise a second integral component 
of data science. They represent the computational translators 
of data that enable communication with and knowledge trans-
lation from datasets. Many types of tools with diverse func-
tionalities are required to adapt to user needs. We will briefly 
discuss here types of tools that have received high priority for 
overcoming the bottleneck of data to knowledge translation. 
These include innovations in (1) on-cloud data processing, (2) 
crowdsourcing and text mining, (3) multi-scale data integra-
tion, (4) data mining and machine learning, (5) mechanistic 
modeling, and (6) Big Data visualization.

Cloud computing infrastructure has been a springboard for 
the Big Data science revolution by enabling scientists to access 

Figure 1. Central theme of data science—data, tools, and 
users. These are 3 essential components of data science 
architectures. Data refer to datasets that are reusable, 
accumulate value over time, and provide a multidimensional, 
systems-level understanding. Tools enable organization of 
and knowledge inference from data, in areas such as on-
cloud data processing, multi-scale data integration, machine 
learning, crowdsourcing and text mining, data visualization, 
and mechanistic modeling. Users are anyone who has access 
to a digital device and an Internet connection. Individuals such 
as healthcare professionals, biomedical investigators, and 
layperson/patient populations are users.

Nonstandard Abbreviations and Acronyms

BD2K	 Big Data to Knowledge

COE	 Center of Excellence

NIH	 National Institutes of Health
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and use shared pools of high-powered computational resources 
for data processing, which would otherwise exceed the capa-
bilities of most desktop laboratory computers. This is a key 
innovation in that Big Data processing tools can be refined 
and maintained by experts in computational infrastructure and 
data science, and subsequently be made readily available to 
the global scientific community. The emphasis on crowd and 
community resources eliminates the requirement for each indi-
vidual research group and organization to purchase, maintain, 
and update the latest hardware. Crowdsourcing, generically de-
fined, is the process of engaging large communities of individ-
uals to collectively accomplish a shared mission. Our BD2K 
COE at the University of California, Los Angeles (UCLA), 
leverages crowdsourcing of genomic knowledge to improve 
and expedite the gene annotation process. These efforts aim 
to systematically define relationships among key biomedi-
cal entities (eg, genes, proteins, diseases, and drugs) from the 
biomedical literature, through a combination of text mining, 
professional biocuration, and crowdsourcing. This strategy en-
lists both professional and patient/layperson crowds, the latter 
proving to be an enthusiastic and powerful resource. Although 
they may lack the formal training to fully appreciate the scien-
tific context, it is increasingly clear that citizen scientists have 
both the motivation and ability to contribute to efforts to orga-
nize biomedical knowledge.6 We envision a virtuous cycle that 
synergistically combines the efforts of scientific professionals, 
citizen scientists, and computational text mining. Multi-scale 
data integration tools are being developed to integrate and de-
fine relationships among distinct data entities (eg, molecular, 
drug, and disease information). The heterogeneous formats 
of biomedical data currently hinder knowledge aggregation, 
which prevents researchers from interpreting datasets using all 
relevant knowledge. Data mining and machine learning inno-
vations are being applied to Big Data datasets to unveil biologi-
cal patterns and emergent properties of data to make valuable 
and reliable inferences. Notably, investigators in the BD2K 
COE at the University of Wisconsin led by Mark W. Craven are 
using this strategy to take unstructured, heterogeneous clini-
cal data and extract definitive, measurable and, importantly, 
predictable clinical phenotypes that are otherwise ill-defined. 
Mechanistic modeling innovations are being developed to en-
able scientists and clinicians to conduct more systematic inves-
tigations. These include strategies using Bayesian networks to 
connect molecular data with mechanistic information, such as 
correlating individual phenotypes, health histories, and multi-
scale molecular profiles to examine disease mechanisms. 
Investigators in the BD2K COE at Stanford University led by 
Scott L. Delp are taking the heterogeneous pool of mobility 
Big Data and using novel strategies to innovate biomechani-
cal modeling and behavioral and social modeling of physical 
activity data to transform diagnosis and treatment of limited 
mobility-associated disorders. Finally, significant efforts are 
being put forth to advance strategies in Big Data visualization. 
This includes creating visual analytics platforms for displaying 
multi-scale interaction network and pathway models of differ-
ent data types (eg, genes, proteins, and metabolites) in a way 
that is customizable to different user inquiries and adaptable to 
the inherent complexities of the data.

One example of an innovative data science architecture 
showcasing certain types of tools described above is shown in 
Figure 2. This illustrates how data science can support cardio-
vascular investigations at-large by offering computational so-
lutions for common inquiries, such as integrating diverse data 
(eg, genomics and proteomics) to predict disease phenotypes 
and support personalized medicine. Noteworthy is the modular 
structure of the workflow, making it integrable and adaptable 
to evolving user needs. Moreover the workflow is intuitive and 
generalizable; it is user-friendly, yet powerful enough for a 
broad range of biomedical applications. The vast utility and 
potential of data science tools are best exemplified in scien-
tific investigations that have successfully harnessed Big Data 
and have gleaned valuable insights to advance science and 
medicine. A study by Denny et al5 used a phenome-wide asso-
ciation study using electronic medical record–linked genetic 
data to examine associations between 3144 single nucleotide 
polymorphisms known from genome-wide association studies 
analysis to mediate human traits, and 1385 electronic medi-
cal record phenotypes in 13 835 patients. The phenome-wide 
association study analysis successfully replicated 66% of 
genome-wide association studies associations and discovered 
63 novel associations; worthy of note, the strongest of these 
associations were validated using an independent cohort. This 
study highlights the tremendous potential of electronic medi-
cal record-linked genetic data to advance our understanding of 
disease phenotypes and human diversity. An additional study 
published this year by Shah et al7 sought to improve the clas-
sification of heart failure with preserved ejection fraction, a 
heterogeneous clinical syndrome with no known treatment, to 
pave the way for more tailored therapeutic strategies. Dense 
phenotyping data from patients (n=397) clinically diagnosed 
with heart failure with preserved ejection fraction included 
46 distinct measurements from clinical, laboratory, ECG, and 
echocardiographic analysis. Unbiased phenotype mapping, 
termed phenomapping, was performed using unsupervised 
machine learning algorithms to cluster patients into 3 groups 
that differed in clinical characteristics, cardiac structure/func-
tion, invasive hemodynamics, and outcomes. Importantly, 
results were validated in a prospective cohort. This study un-
derscores the value of data science approaches for embracing 
the complexities of heterogeneous clinical phenotypes, thus 
innovating clinical decision-making and targeted treatment 
strategies.

Users
Users are the final integral component of data science, includ-
ing virtually anyone with access to a digital device and Internet 
connection. Data science tools are most effective when they 
are user-centric, achieved by interactive development between 
data scientists and users. This process should ideally harness 
efforts by a diverse membership of biomedical professionals, 
or domain experts, and nonprofessionals alike, realizing that 
laypersons are both the source of data and ultimate consumers 
of insights gleaned from data science. The user base will be 
a self-propagating system; the premier quality of datasets, or-
ganization, software, and analytic tools contained within will 
attract users, and from that proximal community of users, new 
data contributors and users will emerge.
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However, because Big Data concepts are currently only in 
the common vocabulary of a select few communities, the key to 
rapidly overcoming this barrier of unfamiliarity is to implement 
a multi-faceted Big Data assimilation and education plan. This 
plan must target 3 general user domains in unique ways. The 
first is the biomedical researcher/users, including for example, 
physicians, and basic science investigators. The goal here will 
be to empower their ability to manage and interpret Big Data us-
ing data science software tools, and to capitalize on their highly 
specialized domain expertise to give meaning to the data. This 
can be accomplished through virtual classrooms, where tool 
dissemination and development occur interactively. The second 

population is Big Data science researchers, specifically targeting 
the new generation of scientists to grow the population of de-
velopers with transdisciplinary expertise in both computational 
biology and biomedical informatics. The final population is the 
general public/laypersons, which include diverse age groups/
backgrounds, patient populations, government employees, and 
clinical personnel, in an effort to heighten public awareness and 
enthusiasm for the opportunities couched in Big Data. Social 
media, gaming tools, and crowdsourcing tactics will be highly 
effective here in showcasing and teaching bioinformatics con-
cepts to laypersons.

Figure 2. Example of a modular data science architecture for supporting cardiovascular investigations. The workflow above provides 
an example to illustrate data science platforms correlating multi-scale molecular expression and phenotypic data from different experiments 
and the literature. The workflow begins with users uploading their own genomics or proteomics data, or data shared on and retrieved from a 
cloud-based infrastructure. Subsequently, with their submitted protein/gene data, they access the knowledge aggregation tools that enable 
location and access of both knowledgebase and analytic tools for processing and analysis. Data types are automatically annotated using 
community intelligence knowledgebase 1 (eg, Gene Wiki9). Multi-scale pathway information is integrated into a cohesive model via a pathways 
analysis tool, which retrieves molecular interaction and biochemical pathway information from analytical tools 1 and 2 (eg, PSICQUIC10 and 
Reactome,11 respectively). Results are output to visualization tools (eg, BioJS12) for tailored, multi-faceted visualization. Processed data can be 
stored and reaccessed via knowledgebases 2 and 3 (eg, COPaKB-Data13 or Sage Synapse [http://www.sagebase.org/]).
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Challenges and Opportunities
Despite the overwhelming promise of data science to innovate 
science and medicine, a few notable challenges require our 
attention. Perhaps the most formidable barrier for transition-
ing into this new era involves rigid ways of thinking within 
the research culture. There are ample opportunities to advance 
biomedicine by expanding our views and our laboratories to 
broader, systems-level ideas and approaches, and by position-
ing ourselves within scientific teams of complementary exper-
tise. Academic departments in the biological realm will benefit 
from a balanced representation of data scientists, clinicians, and 
biologists. We will learn to be comfortable with data-driven, in 
parallel to hypothesis-driven, strategies from which unpredicted 
biological phenomena emerge.8 It cannot be overstated how crit-
ical fundamental domain scientists and the knowledge gleaned 
from targeted science are to the Big Data science research para-
digm. The supremely sophisticated information achieved from 
decades of hypothesis-driven research has provided a wealth of 
structural and functional information for the scientific commu-
nity. Data science-born knowledge is not a competitor, but rather 
a synergistic elevator and integrator of targeted knowledge in 
that it provides multidimensional tools and dissemination chan-
nels for fully capitalizing on these focused efforts.

A second Big Data challenge comes in understanding the ab-
solute requirement for validation of computational models with 
copious amounts of independent data. The emergent, open-end-
ed nature of data science-driven research is a strength in that 
it lessens user bias and incorporates complexities of the data 
that are often excluded. However, it is paramount to understand 
that a derived model—although appropriate for the experimen-
tal datasets—may not be universally generalizable. Overstating 
results can lead to false positives and false confidence. This un-
derscores the principal importance of open science, so that find-
ings may be replicated and interrogated to ensure high fidelity.

This notion leads into a third major Big Data challenge, 
data ownership. A small percentage of scientific investiga-
tors in biomedicine currently share data openly; the majority 
of investigators remain relatively reluctant to making their 
data available for reuse and repurposing. The success of the 
Big Data era requires a global adoption of open science and 
the community working together as dutiful citizens of sci-
ence about the manner in which data are collected, stored, ac-
cessed, and reused. NIH has established the aforementioned 
Biomedical and healthCAre Data Discovery and Indexing 
Engine Center to spearhead efforts toward creating a ben-
eficial and safe environment for open science and data shar-
ing. This will involve formulating policies for NIH-funded 
research that ensure optimal data curation, privacy, and qual-
ity. It is important to recognize that responsible open science 
and data sharing will breed science of superior integrity and 
higher value, which is in itself a most noble objective.

We are at an exciting and critical juncture in medicine and 
scientific investigation; a time when funding mechanisms are 
available for accessing the vast complexity of human health 
and redefining personalized medicine. BD2K is not a trendy, 
fleeting movement; rather, it is an essential advancement in 

and progression of science and medicine that has been birthed 
by the complexity of the questions we are asking. This effort 
is entirely dependent on the community working together, as 
polarized science will likely result in a failed BD2K effort. A 
unified community effort for translating Big Data to knowl-
edge will achieve virtually endless returns on investments ini-
tially put forth for the acquisition of Big Data, producing a 
sum that is much greater than its parts.
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