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Interstitial fibrosis and tubular atrophy (IFTA) is
found in approximately 25% of 1-year biopsies post-
transplant. It is known that IFTA correlates with
decreased graft survival when histological evidence
of inflammation is present. Identifying the mechanis-
tic etiology of IFTA is important to understanding
why long-term graft survival has not changed as
expected despite improved immunosuppression and
dramatically reduced rates of clinical acute rejection
(AR) (Services UDoHaH. http://www.ustransplant.org/
annual_reports/current/509a_ki.htm). Gene expres-
sion profiles of 234 graft biopsy samples were
obtained with matching clinical and outcome data.
Eighty-one IFTA biopsies were divided into subphe-
notypes by degree of histological inflammation: IFTA

with AR, IFTA with inflammation, and IFTA without
inflammation. Samples with AR (n = 54) and nor-
mally functioning transplants (TX; n = 99) were used
in comparisons. A novel analysis using gene coex-
pression networks revealed that all IFTA phenotypes
were strongly enriched for dysregulated gene path-
ways and these were shared with the biopsy profiles
of AR, including IFTA samples without histological
evidence of inflammation. Thus, by molecular profil-
ing we demonstrate that most IFTA samples have
ongoing immune-mediated injury or chronic rejec-
tion that is more sensitively detected by gene
expression profiling. These molecular biopsy profiles
correlated with future graft loss in IFTA samples
without inflammation.

Abbreviations: ABMR, antibody-mediated rejection;
ANOVA, analysis of variance; AR, clinical acute rejec-
tion; DEG, differentially expressed gene; dnDSA,
de novo donor-specific antibody; DSA, donor-specific
antibody; FC, fold change; FDR, false discovery rate;
GCN, gene coexpression network; GEO, Gene Expres-
sion Omnibus; HLA, human leukocyte antigen; IFN-c,
interferon-gamma; IFTA, interstitial fibrosis and tubu-
lar atrophy; N/A, not applicable; subAR, subclinical
acute rejection; TCMR, T cell–mediated rejection; TX,
Treatment group with excellent functioning kidney
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Introduction

Interstitial fibrosis and tubular atrophy (IFTA) describes a

common histological abnormality seen in kidney trans-

plant biopsies in which normal cortical structures are

replaced by interstitial fibrosis. IFTA, when accompanied

by histological evidence of inflammation, correlates with

decreased graft survival (1–3). IFTA is evident histologically

in 25% or more of 1-year surveillance biopsies despite

concomitant stable renal function (4,5). Identifying the

etiologic mechanisms of IFTA is important to better

understand why 10-year graft survival has not improved

significantly despite improved immunosuppression proto-

cols and a dramatic decrease in the incidence of clinical

acute rejection (AR) (6–8).
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Acute T cell–mediated rejection (TCMR), presenting as

either AR or subclinical acute rejection (subAR, histologi-

cal AR without graft dysfunction only demonstrated by

surveillance biopsies), is clearly linked to a higher risk of

IFTA (3,9,10). In a study of 797 recipients, early episodes

of AR led to more fibrosis and inflammation in 1- and

2-year protocol biopsies than those without an occur-

rence of AR. AR episodes followed by abnormal histol-

ogy also resulted in reduced graft survival (9). Likewise,

subAR also increases the risks of developing IFTA and

graft loss and occurs in as many as 20% of surveillance

biopsies done in the first year posttransplant (1,11–15).
Given these strong associations of AR and subAR with

the future development of IFTA, we questioned whether

IFTA biopsies contained unrecognized cellular rejection.

In our model, IFTA marks chronically uncontrolled rejec-

tion, and its development may associate with a higher

risk of graft failure.

We performed gene expression profiling on 234 kidney

graft biopsies obtained for both surveillance and cause

from over 1000 patients at seven transplant centers with

matching clinical and outcome data. Eighty-one samples

were given a diagnosis of IFTA, in which there was his-

tological evidence of IFTA without a clear etiology

(i.e. BK nephropathy or recurrent glomerulonephritis).

These IFTA samples were then classified into subpheno-

types based on the degree of inflammation identified on

light histology, including IFTA with concomitant acute

rejection (IFTA with AR; n = 29), IFTA with inflammation

(n = 10), and IFTA without inflammation (n = 42). Sam-

ples with biopsy-proven AR (n = 54) and normally func-

tioning transplants (TX; n = 99) were included for

comparison. Confirmatory outcome data were obtained

by data query to the United Network for Organ Sharing.

The gene expression results were validated using a pub-

lished dataset derived from an independent, external

cohort of late biopsies (Gene Expression Omnibus

[GEO]; GSE21374) (16,17).

By molecular biopsy profiling we found that differential

gene expression in all IFTA phenotypes was strongly

enriched for the same dysregulated gene profiles seen in

AR biopsies. All IFTA phenotypes (n = 81) demonstrated

as much as 81% commonality in differentially expressed

genes with AR, and a strong enrichment for AR immune/

inflammatory and metabolic/tissue integrity molecular

pathways. This finding was true even for IFTA samples

without any histological evidence of inflammation

(n = 42), a group currently thought to be low risk for

graft loss. Thus, molecular profiling indicated that most

IFTA samples have ongoing and often subclinical

immune-mediated injury that is more sensitively detected

with gene expression profiling than by light histology.

Furthermore, in IFTA samples without histological evi-

dence of inflammation, we found that the relative

expression of AR-affiliated genes correlated with a higher

risk of graft loss at 5 or more years.

Methods

Study population

Two hundred thirty-four kidney allograft biopsies were collected as part

of an National Institutes of Health–funded Transplant Genomics Collabora-

tive Group from 2005 to 2011 by protocol or “for cause” from 210

patients from seven clinical centers. More than one biopsy from the

same patient was included only if there was a change in pathology. The

only exclusions were biopsies that did not conform to the study’s

inclusion/exclusion criteria (Appendix S1), such as a diagnosis of BK

nephritis or recurrent glomerulonephritis (n = 5). Each biopsy was

reviewed locally as well as by a blinded central pathologist (LG) with no

clinical information provided. When there was a discrepancy between the

two reports, the senior investigator (DRS) reviewed the histology slides

and reached a conclusion including discussion and agreement with the

pathologists as necessary. The phenotypes were defined as follows: AR

is biopsy-proven TCMR with a rising serum creatinine; IFTA with inflam-

mation is Banff IFTA+i; IFTA with AR are cases where local and central

pathology reviews called both present and TX are controls based on

surveillance biopsies done from 1 to 2 years. Institutional review boards

approved all research protocols.

Analysis of phenotypic data

ANOVA and chi-squared tests were used to detect differences in continu-

ous and categorical variables between phenotypes and p-values were

adjusted with Bonferroni correction for multiple hypothesis testing. Less

than 1% of the phenotypic features were missing. Survival curve analysis

was performed on death-censored data using JMP software (SAS, Cary,

NC) and Wilcoxon’s ranked tests. Hazard ratios for clinical phenotypic

characteristics were calculated using a Cox proportional hazards model

adjusting for multiple clinical variables: age, sex, race/ethnicity, time post-

transplant, C4d, donor age, BMI, and phenotypes (see Results and

Appendix S2).

Differential gene expression and pathway mapping

Microarray protocols are in Appendix S1 and array data is available online

(NCBI’s Gene Expression Omnibus database; http://www.ncbi.nlm.nih.-

gov/geo/; Accession number GSE GSE76882). Differentially expressed

genes (DEGs) between phenotypes were determined by two-sample

t-tests with False Discovery Rates (FDRs) calculated using the method of

Storey et al (18) to account for multiple hypothesis testing. Immune

pathway mapping and gene set enrichment for biological processes were

performed using gene ontology (GO) and Ingenuity Pathway Analysis. To

avoid false-positive enrichment based on cell type, kidney gene

expression (as found in our biopsy dataset) was used as the background

gene set.

Gene Coexpression Network Analysis

By having gene expression profiles for many samples, we can look for

pairs of genes that demonstrate a similar expression pattern across sam-

ples (two genes in which the transcript levels rise and fall together

across the samples). These two genes are called “coexpressed genes.”

Gene coexpression is of biological interest since it suggests a relationship

among coexpressed genes. A gene coexpression network (GCN) is sim-

ply an undirected graph where each node corresponds to a gene, and

each gene is linked to other genes by an edge if there exists a statisti-

cally significant coexpression. GCNs do not attempt to infer a causal

relationship between genes and the edges represent only a correlation in

gene expression across samples.

GCNs can separate groups of similar-behaving (and likely to be

biologically related) genes from a larger gene set, and do so without the

introduction of user bias when groups of genes are identified based on
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investigator interpretations of external data and immune paradigms.

Thus, these groups of genes or GCNs help identify related genes with a

specific function within the framework of a larger biological process (e.g.

coexpressed immunoglobulin genes within a large set of genes

differentially expressed in AR). In this study, we built GCNs from IFTA

and AR differentially expressed genes, and thus delineated the biological

processes that define these phenotypes. The mathematical model and

full explanation for GCN construction is outlined in Appendix S1,

Section 4.

Results

Patient characteristics and outcomes
A total of 234 biopsies (114 surveillance, 120 “for cause”)

comprise this retrospective study (54 AR, 42 IFTA without

inflammation, 10 IFTA with inflammation, 29 IFTA with AR,

and 99 TX; Table 1). Twenty-one of the participants had

two biopsies analyzed, but the biopsies were taken at

Table 1: Demographics and outcomes of 210 participants grouped by histological phenotypes

AR

IFTA without

inflammation IFTA with AR

IFTA with

inflammation TX

Group

compare1

Donors

Age (mean � SE) 39 � 2 40 � 2 35 � 3 41 � 5 41 � 2 0.8

Female2 22 (47%) 23 (58%) 12 (43%) 5 (50%) 37 (47%) 0.61

Black 2 (4%) 5 (13%) 1 (4%) 0 4 (5%) 0.39

Recipients

Total number of patients 50 40 28 10 82 N/A

Total number of biopsies 54 42 29 10 99 N/A

IFTA Grade (Banff)2 1/2/3 N/A 18/16/6 9/8/5 4/4/0 N/A 0.67

Protocol biopsy 2/50 (4%) 13/40 (33%) 1/28 (4%) 3/10 (30%) 72/82 (88%) <0.0001
Age (mean � SE) 46 � 2 44 � 2 40 � 3 49 � 5 50 � 2 0.02

Female 15 (30%) 19 (48%) 12 (43%) 3 (30%) 28 (34%) 0.55

African American 6 (12%) 4 (10%) 5 (18%) 1 (10%) 6 (7%) 0.64

Diabetes2 5 (10%) 4 (11%) 3 (11%) 2 (20%) 11 (13%) 0.91

Deceased donor2 30 (60%) 24 (62%) 16 (64%) 7 (78%) 43 (52%) 0.57

HLA mm (mean � SE)3 3.8 � 0.3 3.3 � 0.3 3.1 � 0.4 3.7 � 0.7 3.6 � 0.2 0.54

PRA ≥ 202 11 (22%) 8 (22%) 4 (17%) 1 (13%) 11 (13%) 0.77

Induction therapy4 42 (84%) 34 (85%) 25 (89%) 10 (100%) 62 (76%) 0.24

C4d positive 11 (22%) 2 (5%) 5 (18%) 1 (10%) 1 (1%) <0.0001
Borderline or suspicious

for acute cellular rejection

(according to local pathologist)

N.A. 14 (33%) N.A. 6 (60%) 2 (2%) <0.0001

Time to biopsy (median days;

interquartile range)

385;

105–1159
1105;

377–2875
1719;

1178–2977
489;

231–1692
376;

362–425
<0.0001

Biopsy >12 months 27 (54%) 34 (85%) 27 (96%) 6 (60%) 60 (73%) <0.0001
Death-censored graft loss 15 (32%) 14 (35%) 11 (38%) 3 (30%) 0 N/A

Time to death-censored graft loss 1450 � 334 2935 � 346 2747 � 390 1708 � 747 N.A. 0.015

Time from biopsy to graft loss 665 � 183 452 � 189 678 � 213 412 � 408 N.A. 0.78

Death 12 (24%) 6 (15%) 2 (7%) 1 (10%) 3 (4%) N/A

Time to death 1304 � 273 1813 � 385 1417 � 667 1324 � 944 1549 � 408 0.87

Clinical center enrollment

CCF 9 (18%) 5 (12.5%) 2 (7%) 2 (20%) 12 (15%) N/A

SGH 10 (20%) 7 (17.5%) 2 (7%) 2 (20%) 48 (58%) N/A

SVMC 20 (40%) 14 (35%) 15 (54%) 4 (40%) 2 (2%) N/A

MC 1 (2%) 5 (12.5%) 0 2 (20%) 14 (17%) N/A

UCHSC 6 (12%) 7 (17.5%) 5 (18%) 0 3 (4%) N/A

UM 1 (2%) 2 (5%) 4 (14%) 0 0 N/A

NU 3 (6%) 0 0 0 3 (4%) N/A

AR, acute rejection; CCF, Cleveland Clinic Foundation; HLA, human leukocyte antigen; IFTA, interstitial fibrosis and tubular atrophy;

MC, Mayo Clinic, Phoenix; mm, mismatch; N/A, not applicable; PRA, panel reactive antibody; SE, standard error; SGH, Scripps Green

Hospital; SVMC, Saint Vincent’s Medical Center, Los Angeles; TX, Treatment group with excellent functioning kidney; UCHSC, Univer-

sity of Colorado Health Sciences Center; UM, University of Michigan; NU, Northwestern University.
1Analysis method: analysis of variance for quantitative data (probability > F statistic), Pearson’s chi-squared test for dichotomous data.

Significant intergroup comparisons found in Appendix S2.
2Missing data: 9 (3%) diabetes, 5 (2%) donor sex, 6 (2%) donor race, 27 (10%) PRA studies, 11 (4%) deceased donor, IFTA grade 4

(5%).
3Typed HLA antigens: HLA-A1, HLA-A2, HLA-B1, HLA-B2, HLA-DR1, HLA-DR2.
4Induction therapy includes the following: anti-thymocyte globulin (Thymoglobulin), muromonab-CD3 (OKT3), basiliximab (Simulect),

daclizumab (Zenapax), and alemtuzumab (Campath).
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different time points and demonstrated a change in pathol-

ogy. Only the phenotype at the time of most recent biopsy

was used to calculate survival analysis. Thirty-three (44%)

of all IFTA samples were classified as mild (Banff Grade 1:

IFTA without inflammation = 45%; IFTA+AR = 41%;

IFTA+i = 50%). Twenty-eight (40%) of IFTA samples were

classified as moderate (Grade 2; IFTA without inflamma-

tion = 40%; IFTA+AR = 36%; IFTA+i = 50%). The remain-

ing 11 (16%) were classified as severe IFTA (Grade 3).

There were no differences in IFTA grades by subgroups

(p = 0.67).

Median follow-up time was 1613 days posttransplant

(�4.4 years). Only one patient was lost to follow-up.

There were no differences in age, sex, % African

American, % diabetics, number of HLA mismatches, or

% deceased donors across phenotypes. There were a

total of 24 deaths, but no significant differences in

mortality in the “non-TX” groups according to survival

analyses.

Median time to biopsy was 420 days (374 and 1200 days

for surveillance and “for cause,” respectively). The times

to biopsy were significantly greater for AR (800 � 164),

IFTA without inflammation (1796 � 178), IFTA with

inflammation (1008 � 356), and IFTA with AR

(2121 � 213) when compared to the TX phenotype

(603 � 127 days) (p < 0.0001). In over half of the sub-

jects with AR, onset was >12 months posttransplant.

After censoring death, 43/210 (20%) had graft loss with a

median time of 1885 days (�5.2 years; 43–9302 days).

Graft survival was significantly lower in subjects with AR,

IFTA with AR, IFTA with inflammation, and IFTA without

inflammation in comparison to TX (Figure 1). Despite dif-

ferences in graft loss risk, times from biopsy to graft loss

Figure 1: Graft survival according to histological phenotype. Interstitial fibrosis and tubular atrophy (IFTA) samples were classified

into three subphenotypes according to the degree of inflammation: IFTA plus clinical acute rejection (AR), IFTA with inflammation, and

IFTA without inflammation. Biopsies with only AR and normally functioning transplants (TX) were used for survival comparisons. The

figure shows graft survival according to these phenotypes in days posttransplant. The insert table shows the number of subjects at

key time points by phenotypes.

Table 2: Shared differentially expressed transcripts between IFTA subphenotypes (IFTA plus AR, IFTA with inflammation, and IFTA

without inflammation) and clinical acute rejection (cAR)1

All samples

with IFTA

(n = 78)

IFTA without

inflammation

(n = 40)

IFTA with

inflammation

(n = 10)

IFTA plus AR

(n = 28)

Number of DEGs 4705 3280 1513 6229

Number (%) shared with cAR differentially

expressed transcript list

3817 (81%) 2610 (80%) 1040 (69%) 4466 (72%)

AR, acute rejection; cAR, clinical acute rejection; DEGs, differentially expressed genes; IFTA, interstitial fibrosis and tubular atrophy;

FC, fold-change; FDR, false discovery rate.
1In comparison of AR samples to patients with normal, well-functioning transplants (control; TX), there were 5345 differentially

expressed transcripts (FDR*<0.05; FC*>1.2). This table shows the large number and percent of gene transcripts shared between cAR

and each IFTA subphenotype.
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did not significantly differ by phenotype: IFTA with

inflammation (412 days), IFTA without inflammation

(452 days), AR (665 days), and IFTA with AR (678 days)

(p = 0.78).

A Cox proportional hazards model was also used to

examine the effect of various clinical variables on survival

times. We created a model including the following vari-

ables: time from transplant to biopsy, phenotype, age,

sex, black race, diabetes, C4d status, and donor age

(Appendix S2, Section 1). Of these variables, only days

from transplant to biopsy (p < 0.0001), phenotype

(p < 0.0001), and recipient age (p = 0.04) were found to

be statistically significant. We then adjusted the above

survival curves for age and time of biopsy posttransplant

using a Stratified Cox model. In the adjusted model, both

AR and IFTA phenotypes showed the same results of

equally poor long-term graft survival rates (Appendix S2,

Section 2).

A majority (n = 84; 71%) of the “for cause” biopsies and

a minority (n = 21; 19%) of the protocol biopsies had

C4d staining performed. There was no difference in

death-censored graft survival between those with posi-

tive versus negative C4d staining (p = 0.3). The calcu-

lated Cox hazard ratios for C4d positivity versus

negativity were not statistically significant (CI: 0.58–4.2)
(Appendix S2, Section 1). The majority of the samples

with future graft loss were C4d negative (74%). We do

not have donor-specific antibody (DSA) data. These biop-

sies were collected prior to the current practices of mea-

suring serial DSAs.

A B

C D

Figure 2: Differentially expressed genes shared between IFTA and AR. (A) Venn diagram showing differentially expressed genes

(DEGs) shared between interstitial fibrosis and tubular atrophy (IFTA) without inflammation and clinical acute rejection (AR). (B) Plots

the differential fold changes in gene expression (DEGs) comparing IFTA without inflammation versus AR. A linear regression line and

R2 statistic demonstrates a highly concordant direction of gene expression between phenotypes; (C) and (D) repeat and validate the

analysis using an independent, external dataset. Note 1: Differentially expressed genes and fold changes are calculated in relation to

normal transplants (TX) defined by stable function and light histology. Note 2: The subphenotypes of IFTA with and without inflamma-

tion were not available for the external data set.
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Table 3: IFTA without inflammation differentially expressed genes (DEGs) (threshold FDR<0.05) ranked by absolute fold change are

shared with AR1

IFTA gene IFTA FC Function

External literature

AR citings

AR DEG

rank Significance

IGHC 2.7–10.8 Ig heavy chain production Tissue (19,20) 6 Indicates immunoglobulin producing

allograft infiltrating B cells

IGLC (9)1 2.6–7.1 Ig light chain production Tissue (19,20) 5 Indicates immunoglobulin producing

allograft infiltrating B cells

LTF 6.1 Innate anti-microbial,

inflammation-related

Tissue (16,20–24) 1 Literature review connects with kidney

injury and #1 AR gene, which links

AR and IFTA to injury

IGJ 5.9 Ig linker protein Tissue (20) 12 Indicates Immunoglobulin producing

allograft infiltrating B cells

ALB �4.1 Main protein in blood, carrier

protein for steroids, fatty

acids and hormones.

Tissue (25) 8 Previously showed to be decreased in

AR (25) and kidney injury, (35) likely

reflects metabolic disturbance.

SERPINA3 4.0 Protease inhibitor, cleaves

PMN cathepsin G and MC

chymase

Tissue (16,23,24,26,27) 3 Literature review associates with

kidney injury and cell turnover. As

the #3 AR gene, connects AR and

IFTA to injury

CXCL6 3.5 Interacts with CXCR1 and 2,

chemoattractant for PMNs

Tissue (16) 248 Indicates likely neutrophil allograft

chemotaxis

IL7R 3.4 Cell surface marker for

memory T cells, important

specifically for T cell

development and VDJ

recombination.

N/A 44 Signifies the presence memory T cells

and may indicate ongoing activation

and/or development.

DARC 3.3 Promiscuous

chemokine-binding, acts as

chemokine scavenging and

decoy receptor, regulating

chemokine bioavailability

and likely leukocyte

recruitment

N/A 113 Indicative of ongoing immune

mechanisms

CCL5 3.2 A.k.a. RANTES, chemokine

secreted late after T cell

activation, induced by

IFN-c, secreted by CD8+ T

cells. Chemotactic for T

cells, eosinophils, and

basophils. Activates NK

cells.

Tissue (19,21,28–30) 14 Strongly associated with AR and

indicative of Th1 and NK cell

activation

CPA3 3.2 Mast cell carboxypeptidase A,

degrades chymases and

tryptases

N/A 112 Indicates the presence of mast cells in

IFTA and AR, which may be

causative of interstitial fibrosis

SLPI 3.2 Secreted leukocyte serine

protease inhibitor, likely

protects epithelial surfaces

from endogenous

proteolytic enzymes.

N/A 38 Likely parallels immune response to

limit damage by leukocytes,

specifically neutrophils

CORO1A 3.1 Interacts with actin and

involved in a number of

cellular processes such as

cell locomotion,

phagocytosis and NK cell

cytotoxicity. Deficiency in

CORO1 associated with T-

SCID.

Tissue (19) 29 Indicative of ongoing immune

mechanisms

ISG20 3.1 Interferon-induced antiviral

exoribonuclease with

antiviral activity (56)

Tissue (19,21,25,31,32) 22 Induced by IFN-c and strongly

associated with AR

American Journal of Transplantation 2016; 16: 1982–1998 1987

Gene Profiles Detect Rejection in IFTA



Gene expression comparison between AR and IFTA
samples
Four gene expression profiles were created by indepen-

dently comparing each histological phenotype (AR, IFTA

with AR, IFTA with inflammation, and IFTA without

inflammation) to the controls (TX). A threshold calcu-

lated FDR of <0.05 and fold change (FC) of >1.2 was

used (full gene lists; Appendix S3). The majority

(72–81%) of DEGs in biopsies with IFTA and histological

evidence of inflammation were common to AR DEGs

(Table 2). Surprisingly, DEGs for IFTA without inflamma-

tion were also highly shared with AR (80%; Figure 2A)

and differentially expressed in a concordant pattern

(Figure 2B). Moreover, 25 of the top 50 IFTA without

inflammation DEGs (ranked by absolute FC) were

shared with the top 50 for AR. A literature review of

the top IFTA without inflammation DEGs showed that

these have been associated with AR in prior studies

(Table 3) (16,19–43). Finally, there was strong enrich-

ment for AR immune/inflammatory and metabolic

molecular pathways using Ingenuity gene set enrich-

ment tools (Table 4).

These findings were then validated using a publically

available gene expression dataset that consisted of 105

“for cause” late biopsies taken between 1 and 31 years

posttransplant (GEO; GSE21374).(16) Using this external

dataset and our thresholds for FDR and FC, we found

that 2523 transcripts (1868 genes) were differentially

expressed in subjects with IFTA (Appendix S4). Subphe-

notypes of IFTA with or without inflammation and IFTA

with AR were not specifically described. Nonetheless,

DEGs in the external dataset were highly shared with

our AR and IFTA biopsy profiles (77%; Figure 2C) and

differentially expressed in the same concordant patterns

(Figure 2D).

Development of “rejection” GCNs
GCNs were created using the DEGs from (1) AR

biopsies, (2) IFTA with AR, and (3) IFTA without AR

samples. Our intent was to identify groups of genes

indicative of discrete acute rejection mechanisms, and

then determine and compare the expression of these

gene groups in IFTA samples. Using a relatively low

coexpression threshold (0.6), a large network of 1825 AR

Table 3. Continued

IFTA gene IFTA FC Function

External literature

AR citings

AR DEG

rank Significance

AFM �3.1 Albumin family member, may

transport vitamin E.

Blood (33)

Tissue (16,34,35)

26 Previously showed to be decreased in

AR (25) and kidney injury, (35) likely

reflects metabolic disturbance. High

coexpression with ALB gene.

REG1A 3.0 Associated with brain and

pancreas regeneration

NA 75 N/A

CD2 3.0 Costimulatory and cell

adhesion molecule on NK

and T cells

Tissue (19,25,31) 24 Strongly associated with AR and

indicative of Th1 and NK cell

activation

CD52 2.9 A.k.a. CAMPATH-1 antigen.

Unknown function on

mature lymphocytes

N/A 17 Indicates presence of mature

lymphocytes

EGF �2.9 Epidermal growth factor Tissue (36) 177 Indicates decreased growth and

proliferation factor, which may

contribute to kidney injury

CXCL11 2.9 CXCR3 ligand, Chemokine,

IFN-c inducible

Urine (37)

Tissue (28,29)

4 Induced by IFN-c and strongly

associated with AR

CXCL1 2.9 Secreted growth factor that

signals through CXCR2.

Has chemotactic activity for

PMNs.

Tissue (16,38) 99 Similar to CXCL6 above, indicates likely

neutrophil chemotaxis

EVI2B 2.8 N/A N/A 34 N/A

CXCL9 2.8 CXCR3 ligand, Chemokine,

IFN-c inducible

Tissue (28,29,32,39)

Urine (37,40–43)
2 Induced by IFN-g and strongly

associated with AR, suggests TCMR

GZMA 2.8 Fond in CTL and NK cell

cytolytic granules,

responsible for cytotoxicity

of these

Tissue (20,21,25,28–30) 15 Found in NK and CTLs, strongly

associated with AR and indicative of

TCMR

1For each gene in the interstitial fibrosis and tubular atrophy (IFTA) ranked gene list, the table gives the function and its association

with acute rejection (AR). The third column provides the biological function, and often demonstrates a gene with a role in immune

response and inflammation. The fourth column provides literatures references where the genes are linked to AR in prior studies. The

fifth column gives the ranking in the AR ranked gene list and thus demonstrates that these genes are also some of the most highly

ranked AR genes. FC, fold change; FDR, false discovery rate; N/A, not applicable; PMN, polymorphonuclear leukocytes.
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genes was formed (Appendix S5). “Hub” transcripts, or

“highly connected” genes with the most connections

to other genes in a network, were also determined.

Increasing the stringency of the coexpression threshold in

order to identify smaller, tighter clusters of coex-

pressed genes resulted in three major dense networks

of AR GCNs (Figure 3; Appendix S5). The same proce-

dure applied to the IFTA samples identified the

same three networks as found with the AR

samples, reflecting their highly shared molecular

mechanisms, and this was confirmed in the external

dataset (Appendix S4).

The first network, named AR-GCN1, consisted of only 27

upregulated transcripts, of which 25 were immunoglobulin

(93%). The two remaining genes, TNFRSF17 and FCRL5,

are B cell receptor–associated transcripts critical for

B cell activation. As expected, our biopsies with pathol-

ogy-defined TCMR contain B cells (44). The second net-

work (AR-GCN2) consisted of 190 genes, all upregulated

Table 4: Results of pathway and gene enrichment tool analysis for cAR and IFTA without inflammation differentially expressed tran-

scripts1

cAR IFTA without inflammation

Canonical Pathway Analysis p-value2 Canonical Pathway Analysis p-value2

Communication between innate

and adaptive immune cells

2.00E-13 Granulocyte adhesion and diapedesis 3.16E-12

Allograft rejection signaling 6.31E-12 Antigen presentation pathway 3.98E-12

Antigen presentation pathway 7.94E-11 Allograft rejection signaling 1.51E-09

Dendritic cell maturation 1.23E-10 Dendritic cell maturation 1.51E-09

Graft-versus-host disease signaling 1.38E-10 Agranulocyte adhesion and diapedesis 2.19E-09

FXR/RXR activation 2.29E-09 B cell development 6.91E-09

B cell development 4.90E-09 Role of NFAT in regulation of the

immune response

1.74E-08

LPS/IL-1 mediated inhibition of

RXR function

1.02E-08 Communication between innate and

adaptive immune cells

5.01E-08

OX40 signaling pathway 3.02E-08 OX40 signaling pathway 2.57E-07

Crosstalk between dendritic cells

and natural killer cells

3.02E-08 Complement system 3.55E-06

Activated upstream regulator

analysis2 Activated upstream regulator analysis2

IFN-c 7.22E-79 IFN-c 1.42E-63

TNF 5.00E-66 TNF 5.21E-46

IL-4 1.80E-54 IL-10 1.60E-39

IL-1B 1.77E-48 IL-1B 3.09E-37

IFN-a 1.27E-45 CD40LG 1.62E-34

IL-10 1.60E-43 TGF-B1 1.11E-30

STAT3 7.44E-43 IL-4 1.53E-30

IL-6 1.54E-41 IL-2 1.11E-29

STAT1 1.59E-41 IL-6 1.10E-28

Inhibited upstream regulator

analysis2 Inhibited upstream regulator analysis2

MAPK1 1.31E-28 IL-10RA 8.89E-20

IL-1RN 2.13E-27 PTGER4 7.25E-18

IL-10RA 4.79E-27 IL-1RN 1.52E-16

PPARA 5.83E-21 CD3 8.64E-15

PTGER4 3.75E-20 SOCS1 1.00E-14

TRIM24 2.84E-19 PRDM1 1.66E-13

NKX2-3 5.04E-19 Nr1 h 2.04E-13

PRDM1 2.40E-18 NKX2-3 2.24E-11

cAR, clinical acute rejection; IFN, interferon; IFTA, interstitial fibrosis and tubular atrophy; TNF, tumor necrosis factor.
1Mapping of AR and IFTA without inflammation differentially expressed genes (DEGs) to canonical functional biological pathways was

performed using Ingenuity Pathway Analysis (IPA). Enrichment of these DEGs for immune and biological pathways was performed by

using genes significantly expressed in the kidney as the background. Pathways or genes highlighted in gray are shared between AR

and IFTA without inflammation. These data emphasize the high level of shared immune/inflammatory-based pathways according to

unbiased pathway enrichment tools.
2Benjamini-Hochberg correction applied to p-values account for multiple test comparisons.
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in AR. One hundred eighty-six of these genes (93%) had

known biological functions identifiably related to T cell

immune responses and inflammation (Appendix S6). Fig-

ure 4 illustrates the function and connection of the

AR-GCN1 and AR-GCN2 genes. The illustration includes

107 (56%) of the AR-GCN2 genes. The gene set defining

AR-GCN2 was also independently validated using the

external GEO data.

AR-GCN3 consisted of 186 genes that mapped

functionally to cellular metabolism/tissue integrity

(Appendix S6). Eighty-nine (48%) of these genes were

found to code enzymes important in amino acid turn-

over, glucose and fatty acid metabolism, and energy

production. Twenty-five (13%) coded for proteins

involved in cellular detoxification, and 33 (18%) were

membrane transporters of various important solutes,

organic anions, and drugs. Importantly, all the AR-GCN3

genes are downregulated.

Shared expression of the three key GCNs discovered
in AR patients in the IFTA samples
The geometric means of the AR and IFTA GCN genes

were next determined for all the IFTA phenotypes.

Among the IFTA phenotypes, the geometric mean of

GCN2 transcripts (immune response) was highest in

samples with IFTA and concomitant histological AR

(Figure 5; p = 0.0001 when compared TX). The changes

were second highest in IFTA with inflammation samples,

and lowest in IFTA without inflammation samples. Of

note, the expression in IFTA without inflammation was

still significantly higher than TX (p = 0.003), which

demonstrates the key point of the increased sensitivity

of gene expression profiling to detect an ongoing

immune response and inflammation. The geometric

means of the metabolism/tissue integrity–related
AR-GCN3 genes showed the same hierarchy in the

inverse direction compared to TX controls from the low-

est in IFTA plus AR, higher in IFTA with inflammation,

and highest in IFTA without inflammation (Figure 5).

Thus, metabolic and tissue integrity gene dysregulation

tracks with degrees of inflammation.

Next, we examined the geometric means according to

IFTA grades: Banff 1 (mild), 2 (moderate), and 3 (severe).

The geometric means of GCN1 and GCN2 increase in

relation to both the degree of inflammation and the

severity of IFTA (Figure 6). Likewise, the geometric

mean of GCN3 decreases with both the degree of

inflammation and the extent of IFTA.

IFTA-GCNs correlate with graft loss in biopsies with
IFTA and no inflammation
First, we clustered IFTA samples without inflammation

into sample clusters based on the relative gene

expression of the three IFTA-GCN transcript lists

Figure 3: Gene coexpression networks (GCNs). GCNs were discovered in an unbiased manner using the coexpression of differen-

tially expressed genes for biopsies with clinical acute rejection (AR), interstitial fibrosis and tubular atrophy (IFTA) without AR (i.e. with-

out inflammation), and IFTA with AR (i.e. with inflammation). A number of GCN correlation thresholds (ranging from R2 values of

0.6 to 0.9) were tested to examine both loose and tight networks of coexpressed genes. With an increase in the correlation coeffi-

cient threshold, a large GCN network split into three smaller and tighter clusters with common biological functions for each. Genes

with the most connections (i.e. edges) to other genes in a network are given for each GCN.
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(note: IFTA-GCNs are highly matched to the AR-GCNs).

The heat maps in Figure 7 show that the samples

clearly separate based on the expression of each GCN.

Second, we separated the samples into two clusters

for each GCN: IFTA GCN-high and IFTA GCN-low. We

then compared graft survival for each sample cluster

(Figure 7). Our results show significantly increased rates

of graft loss in patients with IFTA without inflammation

based on IFTA GCN2 (p = 0.02) and GCN3 (p = 0.03).

No correlation to graft loss is seen with GCN1

(p = 0.47). Thus, gene expression profiling detects cor-

relations with graft loss risk for individual patients that

are not detected by histology.

A set of 224 differentially expressed genes
distinguish two groups of IFTA without
inflammation biopsies with higher versus lower risk
of graft loss
In the subset of IFTA patients without inflammation

(n = 40), we determined differential gene expression

between patients with and without graft loss (n = 14 vs.

26; 35% vs. 65%). This analysis revealed 224 differen-

tially expressed transcripts (FDR<0.05) (Appendix S7).

One hundred twenty-five (57%) of these genes were

common to the top-ranked AR DEGs. Many of these

DEGs have been identified in previous studies of acute

and chronic transplant injury associated with graft loss

(e.g. LTF, SERPINA3, CXCL6, MMP7, AFM, ISG20, and

CXCL1; Table 3). Figure 2B and D shows these genes

are also among the most “upregulated” genes in AR.

To determine whether these 224 DEGs could delineate

IFTA without inflammation patients into groups at high

versus low risk of graft loss, we clustered all 40 sam-

ples based on the expression of these 224 transcripts.

Using complete linkage, hierarchical clustering, two

groups were identified with the expected differences in

survival curves (Figure 8). Enrichment of these 224

genes for well-known immune rejection and inflamma-

tion pathways, and the ability of these genes to cluster

our study population into subgroups at high and low risk

graft loss, provides both biological and technical plausi-

bility to their discovery. Next, we validated these results

in an independent, external cohort of “late” biopsies

with IFTA (n = 105) (GEO#: GSE21374). The expression

of these 224 genes was also able to separate this

external cohort into high and low risk phenotypes

(Figure 9).

Figure 4: Biological functions of clinical acute rejection–gene coexpression network 1 (AR-GCN1) and AR-GCN2 genes. The

figure illustrates the biological functions of 107 (56%) of the AR-GCN2 (immune response/inflammation) genes and all 31 of the AR-

GCN1 (B cell/immunoglobulin production) genes. The genes in the illustration with dashed red border are present in the GCNs. It is

important to note that these genes are essentially the same in IFTA-GCN2.
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Given that GCNs 2 and 3 correlate with graft survival, we

examined the overlap of the GCN-defining genes and the

224 graft loss set (Figure 10). The results reveal 188

nonoverlapping genes that refine the GCN classifiers for

graft loss (Appendix S7). Pathway enrichment analysis

(GO) demonstrated the highest correlations with immune

responses (p = 3.2 9 10�9), cytokine-mediated signaling

(p = 2.8 9 10�6), interferon gamma (IFN-c) signaling

(p = 1.7 9 10�5) and antigen presentation via MHC class I

(p = 2.2 9 10�5) There was no overlap with GCN1 (B cell

genes).

Finally, the majority (n = 84; 71%) of the “for cause”

biopsies and a minority (n = 21; 19%) of the protocol

biopsies had C4d staining performed. Seven hundred

fifty-six genes were differentially expressed between

C4d-stained positive versus negative (Appendix S3).

Seventeen of these 756 genes were shared with the

224 graft loss genes, including two HLA molecules

(HLA-F,-G), three proteasome subunits (PSMB8, 9, 10),

and TAP1—genes that are all in GCN2 (T cell–mediated

immune response) and consistent with activated inter-

feron signaling and antigen presentation. Indeed, path-

way enrichment analysis using gene ontology of the 17

overlapping genes showed the highest correlations with

type I interferon signaling (p = 1.98 9 10�11) and antigen

processing and presentation (p = 8.8 9 10�7). None

were linked mechanistically to B cell networks.

Discussion

In this multicenter, retrospective analysis, we used gene

expression profiles and multiple bioinformatics tools to

show that all the biopsies with IFTA (n = 81) demon-

strate strong molecular evidence of immune rejection,

injury, and decreased metabolism/tissue integrity. This

finding was true for biopsies of IFTA without histological

inflammation (n = 40). In all cases, IFTA was defined by

biopsy histology without identifiable causes present

(i.e. BK nephritis or recurrent disease). We used a novel

bioinformatic method called Gene Coexpression Network

analysis (GCN) to identify the underlying biological net-

works without introducing any user selection bias. A key

point is that the molecular GCNs identified in IFTA were

essentially the same as found for biopsies with AR. The

relative expression of differentially expressed genes

comprising the GCNs correlated with graft loss and the

severity of IFTA based on Banff grades. These findings

indicate that IFTA biopsies, in which there is no other

Figure 5: Using the geometric means for each gene coexpression network (GCN) to rank the impact by phenotype. (A) Geo-

metric means of AR-GCN2 transcripts (immune response/inflammation) correlated with the degree of histological inflammation: clinical

acute rejection (AR) > interstitial fibrosis and tubular atrophy (IFTA) with AR > IFTA with inflammation (IFTA+i) > IFTA without inflam-

mation > transplants with stable function and normal histology (TX). Note that the geometric mean of AR-GCN2 in IFTA without inflam-

mation was still significantly higher than TX (p = 0.003). (B) In contrast, the geometric means of AR-GCN3 transcripts (metabolism/

tissue integrity) were inversely related to inflammation: TX > IFTA without inflammation > AR > IFTA with inflammation > IFTA plus

AR. (C and D) Same analyses using the IFTA-GCNs. *p-value < 0.05, **p-value < 0.01, ***p-value < 0.0001.
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explanation for pathogenesis, demonstrate evidence of

ongoing, cellular immune-mediated injury that is more

sensitively detected with gene expression than by light

histology.

There were several salient findings in the clinical data.

First, patients with a histological diagnosis of AR or

IFTA at any time posttransplant demonstrate decreased

graft survival compared to those with normal biopsies

(TX). Second, our cohorts show 51% of AR and 99% of

“IFTA with AR” samples were diagnosed >1 year

posttransplant. This finding confirms Scientific Registry

for Transplant Recipients and DeKAF data and growing

evidence that AR episodes often occur late posttrans-

plant in both adult (9,45,46) and pediatric populations

(47).

In this study we describe a network of objectively identi-

fied, tightly coexpressed genes with clear biological func-

tion related to T cell–driven immunity and inflammation

(GCN2; Figure 4). The geometric means of these genes

correlated with histologically identified inflammation and

Banff IFTA grades: AR > IFTA with AR > IFTA with

inflammation >IFTA without inflammation (Figures 5 and

6), indicating the increased expression of cellular immune

response genes. A relevant study listed 28 genes that

could most successfully predict AR versus non-AR status

that included biopsies with both antibody-mediated rejec-

tion (ABMR) and TCMR (6). Of these 28 genes, 26

(93%) were found in the top 150 differentially expressed

genes in IFTA without inflammation. Nineteen (68%)

were found in the GCN2s for both AR and IFTA. Several

of these genes, including CXCL9, CXCL11, GZMA, and

CCL5, were the most differentially expressed genes in

IFTA without inflammation (Table 3). Our results are also

consistent with a recent study of 33 kidney biopsies with

“IFTA and inflammation” demonstrating an increase in

the expression of genes associated with both B and

cytotoxic T cells (47). Although we cannot say that the

expression of these genes causes IFTA, our study

demonstrates that graft loss rates and IFTA grades are

associated with higher relative expression of these

genes and this is equally true for the subset of patients

with IFTA without inflammation. Our hypothesis is that

AR and IFTA phenotypes are different stages along the

arc of the same alloimmune process.

Since GCN2 was identified objectively based on gene

coexpression, the comprising genes, particularly those

with a high number of connections to other genes, may

provide new mechanistic and biological understanding of

acute and chronic rejection (Figures 2 and 4). For exam-

ples, dedicator of cytokinesis 2 (DOCK2) is the most con-

nected AR-GCN2 hub gene (Figure 3) and ranked 15 and

10, respectively, in the IFTA-GCN2 hub genes in our data

and the external dataset (Appendix S5). DOCK2 is critical

to lymphocyte homing and the formation of immunologi-

cal synapses. Deficiency of DOCK2 attenuates AR in

mouse cardiac allografts (48). Another AR-GCN2 hub

gene, the IL10RAa, codes for a receptor to the potent

anti-inflammatory cytokine, IL-10. It is also identified in

the IFTA-GCN2s for our data and the external dataset.

IL-10 expression has been associated with acute rejec-

tion (21,25,49) and the overexpression of IL-10 improved

renal function and survival in rat rejection models (31).

IL-10 expression parallels Th1 cytokine expression,

Figure 6: Correlations between biopsy histology, Banff inter-

stitial fibrosis and tubular atrophy (IFTA) grades, and the geo-

metric means of the three IFTA–coexpression networks

(GCNs). The geometric means (y-axis) are plotted as a function of

three interstitial fibrosis and tubular atrophy (IFTA) phenotypes:

IFTA with AR, all IFTA biopsies, and IFTA without inflammation

(IFTA without i) on the z-axis. In parallel, the geometric means are

plotted as a function of Banff IFTA severity grades (x-axis).
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suggesting a protective mechanism limiting the immune

response (50).

In contrast, we demonstrated an inverse relationship

between the metabolism/tissue integrity network (GCN3)

to histological inflammation and IFTA grades, results

consistent with previously published data (35,51). Similar

to GCN2, we revealed that many IFTA samples without

histological inflammation had higher rates of graft loss

correlating with decreased GCN3 gene expression. The

biological function of GCN3 genes may explain the

response to immune-mediated tissue injury. For exam-

ple, PEPD and XPNPEP2 code for enzymes important to

regulating collagen metabolism. Decreased expression of

these genes may contribute to fibrosis. MME encodes

for neutral endopeptidase, a protein that inactivates

several peptide hormones including angiotensin II and

glucagon. Deficiency in MME leads to fetal membranous

glomerulopathy (52). The key point is that therapeutic

targeting of the metabolic/functional impacts of rejec-

tion on tissue integrity may ultimately turn out to be

another effective strategy to preserve graft function and

survival.

Our model is that perpetual T cell–driven immune activation

and inflammation due to ineffective immunosuppression

leads to cell breakdown, release of alloantigens, and the

creation of an inflammatory milieu that promotes T cell–
mediated B cell activation including production of DSAs.

For example, B cell activating factor (TNFSF13B) was

found in the GCN2 while its receptor (TNFRSF17) clus-

tered tightly among the GCN1 genes. The AT-Hook Tran-

scription Factor (AKNA) was found in GCN2, and has

been shown to upregulate transcription of the receptor–
ligand pair CD40 and CD40L, an essential interaction for

B cell activation and antibody isotype switching (53,54).

Another GCN2 gene, SLAMF8, plays a role in B lineage

development and modulation of B cell activation through

B cell receptor signaling (55). Finally, the GCN2 gene,

RANTES (CCL5), is involved in activation of both T and B

cells and immunoglobulin switching in B cells (56).

Consistent with our model, molecular profiling demon-

strates that the relative expression of genes related to

immunoglobulin production (GCN1) did not independently

correlate with graft loss or worse outcomes for either

AR or IFTA phenotypes. However, our model recognizes

the close connections between humoral and T cell immu-

nity. Although ABMR has been associated with IFTA and

increased risk of graft loss (57), the majority of patients

with de novo DSA (dnDSA) followed for 5 years or more

do not lose their grafts (58,59). Other studies demon-

strate that (1) the development of dnDSA correlates with

medication nonadherence and AR episodes, (2) dnDSA

A

B

C

D

E

F

Figure 7: Graft survival of subjects with IFTA without inflammation according to expression of our three gene coexpression

networks (GCNs). (A) Interstitial fibrosis and tubular atrophy (IFTA) without inflammation samples clustered into two clusters based

on high versus low expression of GCN1 (B cell/immunoglobulin genes). (B) High versus low expression of GCN1 did not demonstrate

a difference in graft survival (p = 0.47). (C and D) In contrast, when this analysis is repeated using GCN2 (immune response/inflammatory),

graft survival of subjects with IFTA without inflammation correlates with relative expression of GCN2 (p = 0.02). (E and F) Relative

expression of GCN3 (metabolism/tissue integrity) also correlates with graft survival (p = 0.03).
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correlate with transplant glomerulopathy but not IFTA,

and (3) biopsies with ABMR frequently show concomi-

tant histological evidence of TCMR (60–63). Our gene

expression and functional mapping are consistent with

this literature by showing a high correlation between C4d

staining and T cell immune networks.

The major limitation in this retrospective, longitudinal

study is that the majority of patients had a single biopsy.

These biopsies only provide a cross-sectional view of

pathology on a large population of transplant patients

with known outcomes. This is not a prospective study

that follows patients from the time of transplantation,

obtains multiple biopsies and gene profiles, and monitors

patient events and other variables over time. Thus,

although our IFTA samples demonstrated strong

evidence for cellular rejection and inflammation at the

time of biopsy, there may have been preceding

nonimmunological insults that also played a role in the

development of IFTA prior to the biopsy. Likewise, we

do not have any data on medication nonadherence. How-

ever, our model is that chronic rejection leads to tissue

injury and IFTA. The corollary is that chronic rejection is

the result of inadequate immunosuppression. Thus,

whether inadequate immunosuppression was the deci-

sion of a physician to reduce dosing or due to patient

medication nonadherence is not relevant to our conclu-

sions. Another limitation is that the overall percentage of

African Americans in this study was less than the per-

centage that receive kidney transplants (10% vs. 34%)

(64). Finally, this study cannot account for the possibility

of ABMR coexisting with TCMR in some biopsies. At the

time this study was designed, dnDSA were not routinely

Figure 8: Graft survival of subjects with IFTA without

inflammation correlates with the expression of 224 differen-

tially expressed “high risk” genes. (A) Interstitial fibrosis and

tubular atrophy (IFTA) without inflammation samples clustered

into high versus low risk clusters based on expression of 224

differentially expressed transcripts. (B) The high versus low risk

sample clusters correlate with graft survival (p = 0.001). DEGs,

differentially expressed genes.

Figure 9: Validating the correlation between high risk gene

expression and graft survival using an independent external

dataset. Interstitial fibrosis and tubular atrophy (IFTA) biopsies

from an external dataset (GEO accession number: GSE21374)

(16) were clustered into high and low risk subgroups based on

expression of the same 224 transcripts that correlated with graft

loss. Again, two subject clusters were identified with marked

difference in survival curves (p = 0.002). Note that the subphe-

notypes of IFTA with and without inflammation were not avail-

able for this external dataset.
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measured except when pathologists found positive C4d

staining. Moreover, the Banff criteria at that time did not

include the current metrics for defining ABMR on

biopsies.

This study demonstrates that IFTA biopsies without alter-

native explanations for pathogenesis (i.e. BK or recurrent

disease) reveal differential gene expression evidence of

ongoing cellular immune-mediated injury. Specifically,

GCNs and the mapping of genes to functional pathways

demonstrate significant molecular overlap to profiles of

AR biopsies, supporting our model that IFTA is a mani-

festation of chronic rejection. The connection between

AR and IFTA profiles is true even for biopsies of IFTA

without inflammation. Expression of GCN2 (immune

response) and GCN3 (metabolism/tissue integrity) genes

correlates with increased risk of graft loss. Furthermore,

a set of 224 genes differentially expressed with graft

loss refines the functional pathways found by GCN analy-

sis. The clinical relevance is that a future prospective trial

may demonstrate that informing immunosuppressive and

monitoring protocols for individual patients based on

serial gene expression profiling of biopsies improves

long-term clinical outcomes.
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