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SUMMARY

Hereditary xerocytosis is thought to be a rare genetic
condition characterized by red blood cell (RBC)
dehydration with mild hemolysis. RBC dehydration
is linked to reduced Plasmodium infection in vitro;
however, the role of RBC dehydration in protection
against malaria in vivo is unknown. Most cases of
hereditary xerocytosis are associated with gain-of-
function mutations in PIEZO1, a mechanically acti-
vated ion channel. We engineered a mouse model
of hereditary xerocytosis and show that Plasmodium
infection fails to cause experimental cerebral malaria
in thesemice due to the action of Piezo1 in RBCs and
in T cells. Remarkably, we identified a novel human
gain-of-function PIEZO1 allele, E756del, present in
a third of the African population. RBCs from individ-
uals carrying this allele are dehydrated and display
reducedPlasmodium infection in vitro. The existence
of a gain-of-function PIEZO1 at such high fre-
quencies is surprising and suggests an association
with malaria resistance.

INTRODUCTION

PIEZOs are non-selective cation channels that sense mechan-

ical stimuli in many multicellular organisms (Coste et al., 2010;

Ranade et al., 2015). PIEZO1 is essential for mechanotransduc-

tion in vascular development, blood pressure regulation, and

red blood cell (RBC) volume control, among other roles (Li
et al., 2014; Ranade et al., 2014b; Retailleau et al., 2015;

Wang et al., 2016; Cahalan et al., 2015). The related PIEZO2

is the principal mechanosensor for touch and proprioception

(Ranade et al., 2014a; Woo et al., 2014, 2015; Chesler et al.,

2016). Human genetic studies have highlighted the significance

of PIEZO1 in human development and physiology. Patients with

loss-of-function mutations in PIEZO1 suffer from persistent

lymphedema caused by congenital lymphatic dysplasia (Lu-

kacs et al., 2015). PIEZO1 mutations are also linked to heredi-

tary xerocytosis, also known as dehydrated hereditary stoma-

tocytosis (Zarychanski et al., 2012; Albuisson et al., 2013; Bae

et al., 2013). Hereditary xerocytosis is a dominantly inherited

blood disorder characterized by RBC dehydration causing

reduced RBC osmotic fragility and is associated with mild or

asymptomatic hemolysis (Delaunay, 2004). This disorder is

considered to be rare and found mostly in the Caucasian pop-

ulation (Archer et al., 2014; Glogowska et al., 2017). Complica-

tions include splenomegaly, resulting from increased RBC trap-

ping in the spleen, as well as iron overload due to unknown

mechanisms (Archer et al., 2014). 19 different point mutations

in PIEZO1 have been described to cause hereditary xerocytosis

(Murthy et al., 2017). Some of these mutations have been elec-

trophysiologically analyzed and show slower inactivation ki-

netics compared to wild-type PIEZO1 channels. The slower

inactivation translates to more ions passing through PIEZO

ion channels, and thus these mutations are considered gain of

function. Consistently, Piezo1 deficiency in RBCs in mice

causes overhydration (Cahalan et al., 2015). Beyond RBCs,

studies in mice have suggested wide-ranging functions of

PIEZO1 in various biological processes; whether hereditary xe-

rocytosis is associated with other conditions beyond RBC pa-

thology is currently not fully understood.
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Figure 1. Mouse Model for Human Xerocytosis

(A) Representative traces of mechanically activated (MA) inward currents for wild-type and mPIEZO1 R2482H. ****p < 0.001.

(B) Strategy for generating knockin mouse.

(C) Osmotic fragility test for RBCs.

(D) Quantification for osmotic fragility. Relative tonicity at which 50% RBCs are lysed (half hemolysis) was calculated for each curve. ****p < 0.001.

(E) Scanning electron microcopy images. Heterozygous Piezo1GOF blood RBCs showed signs of stomatocytes.

(F) Splenomegaly in gain-of-function Piezo1 mice (Figure S1C).

Scale bar, 10 mm. Data are presented as means ± SEM. See also Figure S1 and Table S1.
Plasmodium, the causative parasite for malaria, has exerted

strong selective pressures on the human genome (Kwiatkowski,

2005). This is demonstrated by severe genetic conditions, such

as sickle cell disease, that persist in human populations fromma-

laria-endemic areas because the underlying genetic variants

confer resistance to Plasmodium infection (Hedrick, 2004;

Feng et al., 2004). The scope of RBC disorders that might

contribute to Plasmodium resistance, however, has not been

fully explored. Interestingly, dehydrated RBCs (including those

from hereditary xerocytosis patients) show delayed infection

rates to Plasmodium in vitro, suggesting a potential protective

mechanism against infections from this parasite (Tiffert et al.,

2005). The effects of dehydrated RBC on Plasmodium infection

in vivo, however, remain unknown. Since overactive PIEZO1

causes dehydrated RBCs in hereditary xerocytosis patients,

we reasoned that mice carrying a gain-of-function Piezo1 allele

could offer a suitable model to investigate the effect of Plasmo-

dium infection in vivo (de Oca et al., 2013).

RESULTS

Piezo1 Gain-of-Function Mice Recapitulate Human
Hereditary Xerocytosis Phenotypes
To test whether gain-of-function Piezo1 expression causes xero-

cytosis-like phenotypes in mice, and to elucidate the role of xe-

rocytosis in Plasmodium infection in vivo, we engineered mice

that conditionally express a human-equivalent hereditary xero-
444 Cell 173, 443–455, April 5, 2018
cytosis mutation (Figure 1). Specifically, R2456H is a xerocytosis

mutation in human PIEZO1 that displays significantly longer

channel inactivation time (t) (Albuisson et al., 2013). We verified

that the equivalent mouse Piezo1 point mutation (R2482H), when

overexpressed in HEK cells that lack endogenous PIEZO1

(PIEZO1KO HEK) (Dubin et al., 2017), showed slower channel

inactivation (Figure 1A). Since residue 2482 resides in the last

coding exon (51), we designed the knockin construct by flanking

exons 45–51 with loxP sites, followed by a copy of the region

containing exons 45–51 with a mutation that would replace R

with H at residue 2482 (Figure 1B). We named this conditional

allele Piezo1cx. In cells that express Cre recombinase, the wild-

type exon will be replaced by the modified exon, allowing tis-

sue-specific control of gain-of-function Piezo1 expression.

We generated a constitutive gain-of-functionPiezo1mouse line

by crossing mice homozygous for the mutant allele (Piezo1cx/cx)

with cmv-cre mice that expressed a Cre driver ubiquitously

(Schwenk et al., 1995). We also generated a hematopoietic line-

age-specific gain-of-functionPiezo1mouse line (Piezo1GOF blood)

using vav1-cre (deBoer et al., 2003). Toevaluate the expressionof

the gain-of-function allele, we sequenced the last exon of Piezo1

cDNA from whole blood of homozygous Piezo1GOF blood

and observed the expected nucleotide change c.GG7742-7743AC

(Figure S1A). In addition, we found that Piezo1 transcript levels

in whole blood from both homozygous and heterozygous

Piezo1GOF blood mice were similar to levels observed in wild-

type mice, demonstrating that the genetic manipulation did not



Figure 2. Plasmodium Infection in Gain-of-

Function Piezo1 Mice

(A) Survival curves for gain-of-function Piezo1mice

after P. berghei infected RBCs.

(B and C) Parasitemia recorded by flow cytometry

for phase 1 (first 7 days, B) and phase 1 and 2

together (24 days, C), respectively.

(D) Intact blood-brain barrier in infected gain-of-

function Piezo1 mice.

(E) Quantification of blood-brain barrier disruption.

(F) Brain water content in infected brains.

*p < 0.05, **p < 0.01, and ***p < 0.001. Scale bar,

5 mm. Data are presented as means ± SEM.
alter Piezo1 expression levels (Figure S1B). We also found that

both constitutive (Piezo1GOF constitutive) and blood-cell-specific

(Piezo1GOF blood) transgenic mice (heterozygous and homozy-

gous) were born at the expected Mendelian ratio and appeared

to develop normally.

We found that RBCs fromboth homozygous and heterozygous

Piezo1GOF blood mice showed reduced osmotic fragility, as

shown by a left-shifted curve in a hypotonicity-dependent hemo-

lysis challenge (Figures1Cand1D). Thisdemonstrates thatRBCs

from gain-of-function Piezo1 mice are more resistant to lysis

in response to hypotonic solutions compared to wild-type, a

defining feature for hereditary xerocytosis (Archer et al., 2014).

Piezo1GOF blood mice also displayed hematological properties

similar to mild anemia, indicated by a lower hemoglobin level

and increased reticulocyte number, as is the case for individuals

with hereditary xerocytosis (Table S1). Those patients also have

increased mean corpuscular volume, which is a measure of

RBC volume, and increased mean corpuscular hemoglobin,

which indicates averagehemoglobinmassperRBC (Zarychanski

et al., 2012; Albuisson et al., 2013; Bae et al., 2013; Archer et al.,

2014).We found that shifts in these two values in gain-of-function

Piezo1mice were similar to those observed in hereditary xerocy-

tosis patients.Meancell hemoglobin concentration, in contrast—

which is expected to be elevated in dehydrated RBCs—was not

significantly increased in homozygous Piezo1GOF blood mice.

Importantly, however, we found that RBCs from these mice

were nevertheless dehydrated, as they showed reduced osmotic
fragility (Figures 1C and 1D). In addition,

we used scanning electron microscopy

and found the presence of RBCs with

deformed and dehydrated shapes from

heterozygous Piezo1GOF blood mice,

which is another clinical feature often

observed in patients (Figure 1E). One of

the predominant features of hereditary xe-

rocytosis is splenomegaly. We found that

both homozygous and heterozygous

Piezo1GOF blood mice had significantly

larger spleens (1.04 ± 0.03, 0.74 ±

0.02 cm2, respectively) compared to

wild-types (0.42 ± 0.02 cm2, n = 4 animals

per genotype, Student’s t test, compared

to wild-type, p < 1 3 10�4) (Figures 1F

and S1C). Together, our data show that
gain-of-function Piezo1 mice display hallmark clinical features

observed in human hereditary xerocytosis patients, including

RBC dehydration, mild anemia, and splenomegaly.

Gain-of-Function Piezo1 Mice Have Reduced Growth
Rate of Plasmodium Blood Stages and Protect against
Experimental Cerebral Malaria
To evaluate the connection between Piezo1, RBC dehydration,

and protection against malaria, we infected gain-of-function

Piezo1 mice with a GFP-expressing reference line of the ANKA

strain of rodent malaria parasite Plasmodium berghei (Franke-

Fayard et al., 2004). We chose P. berghei ANKA since this para-

site is a well-established model to analyze the course of infec-

tions in vivo, and to investigate experimental cerebral malaria

in mice (Franke-Fayard et al., 2004; de Souza et al., 2010; Hunt

et al., 2010). We found that wild-type mice died between day 6

and 8, consistent with previous findings (Franke-Fayard et al.,

2004; de Oca et al., 2013) (Figure 2A). In contrast, we observed

that the homozygous and heterozygous Piezo1GOF constitutive

mice survived as long as 24 and 19 days, respectively (Figure 2A).

Importantly, the post-infection survival rates of Piezo1GOF blood

mice were indistinguishable from Piezo1GOF constitutive

mice, indicating that induction of gain-of-function Piezo1 in

hematopoietic lineages was sufficient to extend post-infection

survival (Figure 2A).

Next, we analyzed the course of infection in wild-type and

gain-of-function Piezo1 mice to test whether the expression of
Cell 173, 443–455, April 5, 2018 445



the mutant Piezo1 allele affects Plasmodium growth rate in

RBCs, as suggested by previous in vitro experiments (Tiffert

et al., 2005). We measured the percentage of RBCs that were

GFP positive (parasitemia) by flow cytometry. During the first

week of infection (phase 1, Figure 2B), we found that parasitemia

reached 6%–12% in wild-type mice at the time of death; how-

ever, both Piezo1GOF constitutive and Piezo1GOF blood mice had

significantly lower parasitemia (on day 6, 5.14% ± 0.42% for

constitutive mice and 5.20% ± 0.34% for blood-cell-specific

mice, p < 0.05 compared to wild-type, 8.53% ± 1.65%, Stu-

dent’s t test). These findings suggest that expression of a gain-

of-function Piezo1 allele in blood cells reduce parasite growth

rate of blood stages (Figure 2B). Unlike wild-type animals, which

all died at the end of phase 1, gain-of-function Piezo1 mice then

entered a second phase of infection (phase 2; day 7 to day 23,

Figure 2C). We found that during this phase, they exhibited a

steady increase in parasitemia, eventually leading to severe hy-

perparasitemia of up to 70% of infected RBCs (Figures 2B and

2C). These data suggest that gain-of-function Piezo1 expression

can dramatically modify the course of Plasmodium infection

in vivo, leading to enhanced survival, despite high end-stage

levels of parasitemia (Figure 2C).

A prominent feature of experimental cerebral malaria in the

P. berghei ANKA/C57BL/6 infection model is the breakdown

of blood-brain barrier (Nacer et al., 2014). We injected Evans

blue dye intomice and studied blood-brain barrier compromise.

As expected, we observed blue dye leakage into brain paren-

chyma in all wild-type mice at day 6 after infection (n = 8) (Fig-

ure 2D, left), indicating blood-brain barrier breakdown. Remark-

ably, we did not detect Evans blue leakage in the brains of

Piezo1GOF blood (n = 7) even at day 18 when they were about

to die (Figure 2D, right). To quantitatively evaluate blood-brain

barrier disruption, we measured the optical density of Evans

blue dyes extracted from infected brains (n = 5 per genotype)

(Ferreira et al., 2011). We observed a significant reduction in

brain Evans blue contents in infected Piezo1GOF blood

compared to wild-type mice (Figure 2E). In addition, we evalu-

ated experimental cerebral malaria by measuring brain water

content that reflects the severity of brain edema caused by ce-

rebral complications (Hunt et al., 2014). Wild-type mice had

increased brain water content after infection compared to

Piezo1GOF blood mice (Figure 2F). Thus, our data show that

gain-of-function Piezo1-expressing mice are protected against

experimental cerebral malaria. However, these mice eventually

died, probably due to severe anemia, as they showed reduced

hemoglobin (HGB) levels (2.85 ± 2.5 g/dL, n = 3, in Piezo1GOF
blood mice 18 days after infection) compared to uninfected

Piezo1GOF blood mice (14.02 ± 0.16 g/dL, n = 5, p < 0.002) (Phil-

lips and Pasvol, 1992). Together, our results suggest that gain-

of-function Piezo1 expression reducesPlasmodium growth rate

of blood-stage infection in vivo and can protect mice from the

development of cerebral complications. The reduced Plasmo-

dium infection rate of dehydrated RBCs observed in vitro (Tiffert

et al., 2005) can explain the reduced parasite growth rate of

blood stage observed in gain-of-function Piezo1 mice during

phase 1; however, a connection between dehydrated RBCs

and protection from experimental cerebral malaria was novel

and unexpected.
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RBC Dehydration Is Responsible for Reduced Parasite
Growth and Partially Responsible for Protection against
Cerebral Malaria in Gain-of-Function Piezo1 Mice
To address whether decreased parasite growth rate and preven-

tion of experimental cerebral malaria in the gain-of-function

Piezo1 mice were due to RBC dehydration, we genetically

rescued RBC dehydration in gain-of-function Piezo1 mice and

assessed P. berghei infection. We took advantage of the

fact that PIEZO1-induced RBC dehydration requires the activity

of KCa3.1, a calcium-dependent potassium channel (also known

as Gardos channel). Activation of KCa3.1 drives potassium and

water out of RBCs in response to increased intracellular calcium,

thereby causing dehydration (Maher and Kuchel, 2003; Cahalan

et al., 2015). We crossed the gain-of-function Piezo1 mice to

KCa3.1 knockout mice. As expected, Piezo1GOF blood/

KCa3.1�/� mice had osmotic fragility similar to wild-type

mice, demonstrating that RBC dehydration was corrected by

removing KCa3.1 channel activity (Figures 3A and S2). After

P. berghei ANKA infection, Piezo1GOF blood/KCa3.1�/� mice

survived significantly longer than wild-type (but shorter than

Piezo1GOF blood). This resulted in an intermediate survival curve

of Piezo1GOF blood/KCa3.1�/� mice (p < 0.0001, compared to

wild-type and Piezo1GOF blood) (Figure 3B). This suggests that

correction of RBC dehydration fails to reverse survival rate to a

level that is similar to wild-type, indicating that RBC dehydration

is not completely responsible for the increased survival rate in

the gain-of-function Piezo1 mice.

We also found that Piezo1GOF blood/KCa3.1�/� mice had a

parasite growth rate of blood stage that was indistinguishable

from that ofwild-type during the first week of infection, suggesting

that RBC dehydration was responsible for the reduced parasite

growth observed during phase 1 in gain-of-function Piezo1 mice

(Figure 3C). Importantly, KCa3.1 knockout mice in wild-type

Piezo1 background did not show changes in parasitemia, sug-

gesting that the absence of KCa3.1 per se did not influence

RBC infection (Figure 3C, gray). Finally, quantitative measure-

ments of both Evans blue and brain water content in infected

brainsshowed thatPiezo1GOFblood/KCa3.1�/�miceexperienced

an intermediate level of cerebral complications betweenwild-type

and Piezo1GOF blood mice (Figures 3D–3F). Together, our data

from Piezo1GOF blood/KCa3.1�/� genetic experiments suggest

that (1)RBCdehydration iscompletely responsible for the reduced

parasite growth rate (phase 1); and (2) RBC dehydration is amajor

contributing factor for the absence of experimental cerebral ma-

laria (phase 2), but that other mechanisms may be involved.

Gain-of-Function Piezo1 Expression in RBCs and T Cells
Contributes to Protection against Cerebral Malaria
The incomplete protection from experimental cerebral malaria

in Piezo1GOF blood/KCa3.1�/� mice (despite normal parasite

growth rate) suggests the existence of other mechanisms that

affect cerebral complication in gain-of-function Piezo1 mice.

Previous work has shown that processes critical for the develop-

ment of cerebral malaria in both humans and rodents involve

both RBCs and immune cells (Baptista et al., 2010; Nacer

et al., 2014; Dunst et al., 2017). To directly address the cell

autonomous function of gain-of-function Piezo1 allele in these

cells, we induced expression of gain-of-functionPiezo1mutation



Figure 3. Role of RBC Dehydration in Plas-

modium Infection in Mice

(A) Deletion of KCa3.1 in heterozygous

Piezo1GOF blood mice (orange) restored RBC

dehydration in heterozygous Piezo1GOF blood

(green). Piezo1GOF blood/KCa3.1�/� mice had a

similar curve to wild-type.

(B) Post infection survival rate of Piezo1GOF blood/

KCa3.1�/� mice (orange) is intermediate

between wild-type (black) and heterozygous

Piezo1GOF blood mice (green). p < 0.0001, Mantel-

Cox tests.

(C) Both Piezo1GOF blood/KCa3.1�/� and

KCa3.1�/� mice had same parasitemia as wild-

type, with significantly higher than heterozygous

Piezo1GOF blood mice.

(D) Breakdown of blood-brain barrier in

Piezo1GOF blood/KCa3.1�/� mice 13 days after

infection.

(E) Quantification for blood-brain barrier disruption.

(F) Brain water content in infected brains.

*p < 0.05, **p < 0.01, and ***p < 0.001. Scale bar,

5 mm. Data are presented as means ± SEM. See

also Figure S2.
in different blood cell types and tested survival rate, parasite

growth rate, and experimental cerebral malaria.

First, we generated RBC-specific gain-of-function Piezo1

mice (Piezo1GOF RBC) with EpoR-cre (Heinrich et al., 2004).

We verified the efficiency and specificity of EpoR-cre expression

bymeasuring RBC osmotic fragility for Piezo1GOF RBCmice. We

found that these mice had reduced RBC fragility, similar to

Piezo1GOF blood mice, suggesting that EpoR-cre was efficiently

inducing recombinase activity in most RBCs (Figures 4A and

S3A). Also, gain-of-function Piezo1 mRNA was not present in

immune cells (CD4+ and CD8+ T cells) from Piezo1GOF RBC

mice. This is an important control, as we address the role of

gain-of-function Piezo1 expression in T cells separately (see

below) (Figure S4B). We found that infection of Piezo1GOF RBC

micewithP. berghei caused a survival rate indistinguishable from

Piezo1GOF blood mice (Figure 4B). Furthermore, Piezo1GOF RBC

mice had a parasitemia curve indistinguishable from

Piezo1GOF blood mice and did not develop experimental cerebral

malaria (Figures 4C and 4D). These data suggest that the expres-

sion of gain-of-function Piezo1 in RBCs is sufficient to cause

reduced Plasmodium growth rates and to protect mice from

the development of cerebral complications.

Parasite-specific CD8+ cells are essential in causing Plasmo-

dium-inducedcerebral complications (Yañezet al., 1996;Belnoue

et al., 2002; Howland et al., 2015). We induced gain-of-function
Piezo1 expression in peripheral CD4+ and

CD8+ T cells by using hCD2-cre (Vacchio

et al., 2014). We tested the specificity

of hCD2-cre by measuring RBC osmotic

fragility and showed that Piezo1cx/+;

hCD2-cre (Piezo1GOF T cells) mice had

normal RBC fragility, confirming that

hCD2-cre did not induce gain-of-function

Piezo1 expression in RBCs (Figures 4A
and S3A). Furthermore, we evaluated the efficiency of hCD2-cre

in targeting CD4+ and CD8+ T cells by sequencing the cDNA

made by those cells from homozygous Piezo1GOF T cells mice

and found that gain-of-functionPiezo1mRNAwas theonlyPiezo1

transcript expressed in the targeted cells (Figure S3B).

We found that, after P. berghei infection, Piezo1GOF T cells

mice survived significantly longer than wild-type mice (p <

0.01), but not as long as Piezo1GOF blood or Piezo1GOF RBC

mice (p < 0.01), suggesting that expression of gain-of-function

Piezo1 in T cells provided partial protection (Figure 4B). Further-

more, we found that parasitemia in Piezo1GOF T cells mice was

identical to that of wild-type mice during the first 7 days after

infection, before it continued climbing until the end of the infec-

tion (Figure 4C, compare dark blue and black). This suggested

that gain-of-function Piezo1 expression in CD4/8+ T cells did

not alter parasite growth rate of blood stage compared to wild-

type mice (phase 1). Intriguingly, despite wild-type-like parasite

growth rates during the first 7 days, Piezo1GOF T cells mice

displayed attenuated experimental cerebral malaria during

phase 2 (Figures 4D and 4E). Also, Piezo1GOF T cells mice had

an intermediate level of cerebral complications between wild-

type and Piezo1GOF RBC mice (Figure 4F). These data demon-

strate that gain-of-function Piezo1 expression in T cells can pro-

vide partial survival advantage by attenuating the disruption of

the blood-brain barrier seen in experimental cerebral malaria.
Cell 173, 443–455, April 5, 2018 447



Figure 4. Role of Gain-of-Function Piezo1 Expression in RBCs and T Cells during Plasmodium Infection in Mice

(A) RBC osmotic fragility for different gain-of-function Piezo1 mice.

(B) Mice with gain-of-function Piezo1 in different blood cells had distinct survival rates after infection. Piezo1GOF RBC (red) had survival rate similar to pan-blood-

cell-specific mice (Piezo1GOF blood [green]), p > 0.05. Macrophage-specific gain-of-function mice (Piezo1GOF macrophage) had same survival rate as wild-type,

p > 0.05. Piezo1GOF T cells had a survival rate greater than wild-type (p < 0.01) and less than Piezo1GOF blood mice (p < 0.01). Mantel-Cox tests.

(C) Parasitemia recorded by flow-cytometry for gain-of-function mice. *p < 0.05, **p < 0.01, and ***p < 0.001, Student’s t test.

(D) Blood-brain barrier compromise in T cell- and RBC-specific gain-of-function mice after infection.

(E) Quantification for blood-brain barrier disruption.

(F) Brain water content in infected brains.

Scale bar, 5 mm. Data are presented as means ± SEM. See also Figure S3.
Finally, we tested whether gain-of-function Piezo1 expression

in macrophages can affect Plasmodium infection, since macro-

phages have been shown to be important for both protection

and pathology in malaria (Chua et al., 2013). We expressed
448 Cell 173, 443–455, April 5, 2018
gain-of-function Piezo1 specifically in macrophages using

LysM-cre (Clausen et al., 1999). Piezo1GOF macrophage mice dis-

played survival rate (Figure 4B) and parasitemia curves similar to

wild-type littermates (Figure 4C). These results indicate that



Figure 5. Identification of Gain-of-Function PIEZO1 Mutations in African Populations

(A and B) Yoda1-induced intracellular calcium signals in PIEZO1KO HEK cells overexpressing A1988V (A) and E756del (B) cDNA (*p < 0.05). Allele frequency for

both mutations is shown in the insets.

(C) Representative traces of mechanically activated (MA) inward currents for wild-type and mutated cDNA. R2456H, A1988V, and E756del mutations.

(D) Quantification for inactivation time (t).

each point = a single cell. ***p < 0.001, **p < 0.01. Data are presented as means ± SEM. See also Table S2.
macrophages are unlikely to play an essential role in reducing

parasite growth rate and protection against experimental cere-

bral malaria in xerocytosis mice. Together, our data suggest

that RBCs play a major role in gain-of-function Piezo1-mediated

protection against Plasmodium infection and cerebral malaria;

however, T cells also appear to be involved in protection against

cerebral complications.

Identification of a Common Human PIEZO1 Gain-of-
Function Mutation in African Populations under Positive
Selection
The role of gain-of-function PIEZO1 in rodent malaria described

here raises a conundrum: if PIEZO1 mutations are protective

againstPlasmodium infection, why then is hereditary xerocytosis

not commonly observed in individuals from Africa, where malaria

is highly prevalent? To investigate whether common PIEZO1

gain-of-function mutations are present in African populations,

we took a comparative genomics approach to look for possible
PIEZO1 gain-of-function alleles and cataloged nonsynonymous

(missense) SNPs and in-frame insertions/deletions (indels) in

PIEZO1. To maximize the likelihood of finding gain-of-function

mutations, we (1) performed our search using the Exome Aggre-

gation Consortium data (ExAC) (Lek et al., 2016); (2) picked

PIEZO1 SNPs or indels with allele frequencies above 0.5%;

and (3) picked mutations that were more than 5-fold enriched

in African populations, as compared to people of non-African

descent. Using these criteria, we found 21 mutations consisting

of 19 SNPs and 2 indels (Table S2).

To test for potential functional effects of the various mutations,

we next performed a large-scale calcium-imaging assay by

screening the 21 candidate mutations for increased response

to various concentrations of the PIEZO1 agonist Yoda1 (Syeda

et al., 2015). We found that two of the 21 mutations lead to

increased PIEZO1 responses in this screen: amino acid substitu-

tion A1988V (SNP) and indel E756del (3 nucleotide deletion) (Fig-

ures 5A and 5B). We found that the A1988Vmutation only has an
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allelic frequency of 0.8% in the African population (inset in

Figure 5A). In contrast, the E756del mutation has an allelic fre-

quency of 18% in individuals of African descent (3% in Euro-

peans), and therefore present in at least 1 copy in about a third

of African population (inset in Figure 5B).

To test whether these mutations lead to gain-of-function

PIEZO1 channel kinetics, we recorded mechanically activated

currents and found that PIEZO1 variants containing A1988V or

E756del mutations was activated normally by mechanical force

but had significantly longer inactivation time constants (t)

compared to wild-type (p < 0.0001). This is similar to R2456H, a

gain-of-function allele that has the longest inactivation time

among all hereditary xerocytosis mutations (Albuisson et al.,

2013) (Figures 5C and 5D), and the equivalent of this allele was

used to create our gain-of-function Piezo1mice (Figure 1). These

data show that gain-of-functionPIEZO1mutationswith similar ion

channel activities to those causing hereditary xerocytosis in

Caucasian families (Albuisson et al., 2013) can be found in

individuals of African descent. At least one of these, E756del, is

present in one-third of African individuals, suggesting a potential

connectionbetweenPIEZO1,hereditaryxerocytosis, andmalaria.

We focused on the more abundant allele, E756del. We hypoth-

esized that this allele may be under positive selection in African

populations, where malaria is endemic. To test this hypothesis,

we assessed threemain signatures of selection, commonly found

in allelic variants under positive selection (Sabeti et al., 2006): (1)

population differentiation of the allele observed between African

and non-African populations, as measured by Fst; (2) whether a

variant is in linkage-disequilibrium with nearby SNPs creating a

long-range haplotype block, which is commonly observed in

more recent (<25,000 years) selective sweeps; and (3) whether

the allele is derived (i.e., non-ancestral), since such new alleles

typically have lowpopulation frequencies, unless under selection.

We looked at the frequency of the E756del allele in the popu-

lations present in the 1000 Genomes catalog (Auton et al., 2015)

and found that it is present at high allelic frequency (9%–23%) in

all populations of African descent, including African Americans

(allelic frequency 14%), but not in individuals of non-African

ancestry (allelic frequency <1%, Figure 6A). The observed geno-

type frequencies at this locus are in Hardy-Weinberg equilibrium

(c2 = 0.201, p = 0.654), and therefore segregating as expected in

a randomly mating population. Next, we investigated population

differentiation across the 1000 Genomes populations. We calcu-

lated FST values at all PIEZO1 missense mutation loci between

individuals of African and non-African descent and found that

the populations were most differentiated using the E756del

allele (FST for E756del = 0.32, FST of all other PIEZO1 missense

alleles = 0–0.26, Figure 6B). This finding is consistent with

E756del being under positive selection in populations where

malaria is endemic.

We next investigated the regions surrounding the E756del

locus but did not observe any SNPs in significant linkage

disequilibrium with E756del. The lack of an observed long haplo-

type flanking this allele makes it harder to conclusively provide

proof of positive selection of the E756del variant (Vitti et al.,

2013). The lack of linkage disequilibrium, however, could also

be because this allele might have been subject to selection on

standing variation (i.e., not as the result of a selective sweep
450 Cell 173, 443–455, April 5, 2018
[Sabeti et al., 2006]), or because the selective pressure on this

locus is relatively old (>25,000 years). Even though Plasmodium

is an ancient parasite (Loy et al., 2017), the former is still a likely

explanation because the expansion of P. falciparum and subse-

quent impacts on human selection likely began in the last 10,000

years (Joy et al., 2003).

To assess whether the E756del variant is derived (i.e., is a new

allele that occurred in Africans) or ancestral, we investigated the

architecture of the PIEZO1 locus in the archaic humans and non-

human primates. There is low amino acid sequence homology

near the E756del locus between humans and non-human pri-

mates (Figure S4A); thus, we could not investigate pre-human

ancestry. We found, however, that both Neanderthals and

Denisovans had the wild-type E756 in their PIEZO1 genes

(Figures 6C and S4B). This finding shows that the PIEZO1

E756del gain-of-function allele is derived in individuals of African

descent, again consistent with being under positive selection

(Sabeti et al., 2006). Combined, our analyses show that the

PIEZO1 gain-of-function mutation E756del is a high-frequency

(present in one-third of African population) derived allele that is

highly differentiated in populations where malaria is endemic.

These findings are highly suggestive of the E756del genetic

variant being under positive selection in populations of African

descent (Sabeti et al., 2006), presumably because of its likely

role as a malaria-protective allele.

RBCs from E756del African American Carriers Are
Dehydrated and Cause Reduced Infection by
Plasmodium falciparum In Vitro

We acquired blood samples from healthy volunteer African

American donors and tested whether E756del causes xerocyto-

sis-like RBC dehydration and, importantly, whether it confers

attenuation of infection against P. falciparum in vitro. We ob-

tained 25 whole-blood samples and used white blood cells to

sequence the exon containing E756del. We found that nine

(36%) African American donors were heterozygous for E756del

(none were homozygous) (Figure S5A). We also screened all 25

donors for other known common mutations that affect RBC

morphology and could potentially influence susceptibility to

Plasmodium infection. Our sequencing results showed that all

25 donors were free of HbS, HbC, and HbE mutations in the

b-globin chains that cause hemoglobinopathy (Figure S5B). In

addition, we showed that none of the 25 donors had the varia-

tions that cause a-thalassemia (Figure S5C), another condition

associated with RBC abnormality and Plasmodium infection

(Chong et al., 2000).

Next, we imaged RBCs with scanning electron microscopy

from three carriers and showed that all had RBCs with echino-

cyte and stomatocyte morphologies, which is a characteristic

of hereditary xerocytosis RBCs (Figure 7A). Remarkably, we

also found that RBCs from all 9 donors with the E756del mutation

were dehydrated as assayed by osmotic fragility test (Figures 7B

and 7C), similar to RBCs from known xerocytosis patients

(Delaunay, 2004; Archer et al., 2014). Next, we infected both

control and E756del carrier RBCs with P. falciparum in vitro.

Parasitemia was significantly lower for E756del carriers relative

to non-carriers, measured by both Giemsa and SYBR green

staining methods (Figures 7D and 7E) (Johnson et al., 2007).



Figure 6. Population Genetics of PIEZO1 Gain-of-Function E756del Allele Common in Populations of African Descent

(A) Human population demographics for E756 indels. E756 deletion (TCC/–) exists at high frequencies in all populations of African descents (purple). A minor

allele, E756 insertion (TCC/TCCTCC) was also discovered (coral).

(B) Differentiation (FST) between populations of African and non-African ancestry at each loci for all PIEZO1 missense mutations. Alleles are colored by whether

the minor allele frequency (MAF) was highest in African (red) or non-African (black) populations, or were similar (gray).

(C) A nucleotide alignment of modern and pre-modern (Neanderthal and Denisovan) human PIEZO1minus strand sequences around the E756del allele showing

the codon positions. (Ambiguous base: M = C or A; R = A or G). The TCC deletion (GGA on minus strand) spans two codons but only deletes E756 while shifting

nucleotides to leave D757 intact. Individual Neanderthal and Denisovan reads used to create this alignment and comparisons to non-human primate PIEZO1

amino acid sequences are shown in Figure S4.

See also Figure S4.
Together, our data demonstrate that E756del is a common

PIEZO1 gain-of-function mutation in African populations,

causing RBC dehydration in otherwise healthy African Ameri-

cans, and is likely under positive selection, due to its ability to

confer reduced susceptibility of RBCs to P. falciparum infection.

DISCUSSION

Gain-of-Function Piezo1 Expression in Blood Cells
Provides Protection against Plasmodium-Induced
Cerebral Complications In Vivo

Dehydrated RBCs, including those from hereditary xerocytosis

patients, show slower infection rates to P. falciparum in vitro (Tif-

fert et al., 2005). However, this mechanism of protection has

never been tested in vivo. To address these issues, we engi-

neered a gain-of-function Piezo1 mouse that recapitulated

most features of hereditary xerocytosis. Remarkably, gain-of-
function Piezo1mutation induced in different types of blood cells

caused dramatic shifts in survival rates in response to P. berghei

infection, caused by reduced parasite growth rate of blood stage

as well as protection from experimental cerebral malaria.

Our mouse genetic data suggest that gain-of-function

Piezo1-induced RBC dehydration is a major determinant in

the protection against cerebral complications of malaria.

Several other genetic mutations that affect RBC morphology

are associated with resistance to malaria in human populations

(Hedrick, 2004; Feng et al., 2004), and some of these mutations

also cause RBC dehydration, such as sickle cell disease

(Brugnara, 1995). Similar experiments can be performed in

the future to evaluate the potential contribution of RBC dehy-

dration to malaria resistance in the genetic disorders mentioned

above. Another important next step is to determine the molec-

ular mechanisms responsible for RBC-dehydration-dependent

attenuation of Plasmodium infection.
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Figure 7. Characterization of RBCs from E756del Carriers for Xerocytosis-like Phenotypes and P. falciparum Infection

(A) SEM images. Three individual E756del carriers have RBCs with echinocytes (white arrowhead) and stomatocytes (yellow arrowhead), magnified in lower

panels. Scale bar for upper panels, 10 mm; for lower panels, 5 mm.

(B and C) Osmotic fragility test. RBCs from E756del heterozygous carriers (n = 9) had a left-shifted curve (blue) compared to controls (n = 16) (black) (B), as

quantified in (C) **p < 0.01.

(D and E) P. falciparum infection into RBCs from E756del carriers. Giemsa staining (D) and SYBR Green labeling of parasite DNA inside RBCs (E) (**p < 0.01,

*p < 0.05).

Statistics: Student’s t test for each time point. Data are presented as means ± SEM. See also Figure S5.
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In addition to RBC dehydration, we discovered an unexpected

function of gain-of-function PIEZO1 in immune cells during

Plasmodium infection. T cells play both pathogenic and protec-

tive roles in human malaria, as well as in murine malaria models

(Hafalla et al., 2006; Ewer et al., 2013). T cells experience diverse

mechanical stimuli during development and function, but the role

of mechanosensitive ion channels in immune cells is poorly un-

derstood (Huse, 2017). It is possible that overactive PIEZO1

channels alter T cell developmental programs and/or modulate

their activity when encountering parasites. It will be of interest

to use both gain-of-function and loss-of-function Piezo1 mice

to explore the role of this ion channel in T cells.

The Discovery of Gain-of-Function PIEZO1 Allele
Present in One-Third of the African Population
The discovery of gain-of-function PIEZO1 E756del in African

populations with a high allele frequency of �18% (such that an

estimated one-third of African people carry this mutation as

heterozygotes) is quite surprising. Our findings dramatically

redefine the epidemiology of this disorder: hereditary xerocyto-

sis-like condition is much more common than previously antici-

pated. Thus, E756del provides a unique opportunity to evaluate

the association between gain-of-function PIEZO1, RBC dehy-

dration, and malaria in endemic regions.

Despite the experimental evidence above, PIEZO1 locus was

not detected as a strong candidate by recent genome-wide as-

sociation studies (GWASs) that aimed to identify genetic loci for

severe malaria resistance (Leffler et al., 2017). This is potentially

due to GWAS limitations and the complexity of this particular

genetic locus. GWAS samples have high levels of genetic diver-

sity and are underrepresented in reference panels of genetic

variation (Malaria Genomic Epidemiology Network, 2014; Leffler

et al., 2017). Also, GWASs mainly use SNPs to determine asso-

ciation, and this would be challenging to evaluate more complex

loci without genetic imputation method. E756del is in such a

locus with multiple short tandem repeats (Figure 6C), so that

imputation of this mutation into current GWAS datasets is not

straightforward. In this regard, our experimental data provide

promising clues for association analysis: sequencing this partic-

ular locus in endemic population can determinewhether E756del

is associated with protection against severe malaria.

E756del Provides an Opportunity to Evaluate the Role of
Overactive Mechanotransduction in Human Health
Does E756del allele cause hereditary xerocytosis and other dis-

orders? We readily identified E756del carriers from self-reported

healthy African American blood donors. Whether E756del car-

riers have anemia or splenomegaly is not known to date. A full

clinical evaluation of individuals carrying this allele will be of

high interest to assess how overactive PIEZO1 influences xero-

cytosis-related phenotypes, as well as other conditions. For

example, analysis of loss-of-function Piezo1 mice has demon-

strated a critical role of this ion channel in cardiovascular func-

tion (Retailleau et al., 2015; Wang et al., 2016; Rode et al.,

2017). Therefore, it will be of interest to assess the role of over-

active PIEZO1 channel in hypertension, which has high inci-

dence in African Americans (Kaplan, 1994). We expect that

a complete clinical characterization of individuals with the
E756del allele will shed further light on the range of phenotypes

that are associated with PIEZO1, including anemia, splenomeg-

aly, autoimmune diseases, various aspects of cardiovascular

function, as well as in indications not previously associated

with PIEZO1.
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Yañez, D.M., Manning, D.D., Cooley, A.J., Weidanz, W.P., and van der Heyde,

H.C. (1996). Participation of lymphocyte subpopulations in the pathogenesis of

experimental murine cerebral malaria. J. Immunol. 157, 1620–1624.

Zarychanski, R., Schulz, V.P., Houston, B.L., Maksimova, Y., Houston, D.S.,

Smith, B., Rinehart, J., and Gallagher, P.G. (2012). Mutations in the mechano-

transduction protein PIEZO1 are associated with hereditary xerocytosis. Blood

120, 1908–1915.
Cell 173, 443–455, April 5, 2018 455

http://refhub.elsevier.com/S0092-8674(18)30224-1/sref35
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref35
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref35
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref36
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref37
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref37
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref37
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref38
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref38
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref38
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref39
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref39
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref39
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref40
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref40
https://doi.org/10.1126/science.aam6393
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref42
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref42
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref42
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref42
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref43
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref43
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref43
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref44
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref44
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref44
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref44
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref45
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref45
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref45
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref45
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref46
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref46
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref46
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref47
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref47
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref48
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref48
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref48
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref48
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref49
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref49
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref49
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref50
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref50
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref50
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref51
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref51
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref52
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref52
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref52
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref52
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref53
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref53
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref53
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref53
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref54
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref54
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref55
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref55
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref55
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref55
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref56
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref56
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref56
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref56
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref57
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref57
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref57
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref57
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref58
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref58
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref58
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref59
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref59
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref59
https://doi.org/10.7554/eLife.07370
https://doi.org/10.7554/eLife.07370
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref61
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref61
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref61
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref62
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref62
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref63
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref63
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref63
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref63
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref64
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref64
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref65
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref65
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref65
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref66
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref66
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref66
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref67
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref67
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref67
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref67
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref68
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref68
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref68
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref69
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref69
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref69
http://refhub.elsevier.com/S0092-8674(18)30224-1/sref69


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Healthy whole blood samples TSRI normal blood donor service (La Jolla, CA) https://nbds.scripps.edu/

Healthy whole blood samples biological specialty corporation (PA) http://www.biospecialty.com/

Bacterial and Virus Strains

Mach1 competent cells Thermo Fisher Catalog#C862003

Chemicals, Peptides, and Recombinant Proteins

Yoda1 (50mg stock) (Tocris) Fisher Scientific Catalog#5586/50

Critical Commercial Assays

MojoSort mouse CD4 T cell Nanobeads kit BioLegend (San Diego,CA) Catalog#480069

MojoSort mouse CD8 T cell Nanobeads kit BioLegend (San Diego,CA) Catalog#480007

QIAamp DNA blood mini kit QIAGEN Catalog#51104

Quick-RNA Whole Blood Zymo Research, Irvine, CA Catalog#R1201

GoTaq qPCR Master Mix Promega, Madison Catalog#A6002

Experimental Models: Cell Lines

Human Piezo1KO HEK cells Our own lab Dubin et al., 2017

Experimental Models: Organisms/Strains

Mouse: B6N.Cg-Tg(Vav1-icre)A2Kio/J The Jackson Lab Stock# 018968

Mouse: B6;129S1-Kcnn4tm1Jemn/J The Jackson Lab Stock# 018826

Mouse: B6.C-Tg(CMV-cre)1Cgn/J The Jackson Lab Stock# 006054

Mouse: C57BL/6-Tg(CD2-cre)1Lov/J The Jackson Lab Stock# 027406

Mouse: B6.129P2-Lyz2tm1(cre)Ifo/J The Jackson Lab Stock# 004781

Mouse: Eportm1(EGFP/cre)Uk Dr. Klingmuller group at Max-Planck-Institute für

Immunbiologie, Freiburg, Germany

N/A

Mouse: Piezo1cx/cx Taconic Biosciences Customized

Plasmodium Berghei: P. berghei (ANKA) GFPcon

259cl2

California Institute for Biomedical Research, La

Jolla, USA

N/A

Plasmodium Berghei: P. berghei (ANKA) mCherry-

hsp70-Luc-eef1a

Leiden Malaria Research Group, the Netherlands line 1868

Plasmodium falciparum Elizabeth Winzeler, university of California,

San Diego

N/A

Oligonucleotides

CTCACAGACAGGTGTTCATC This paper RT-PCR for mouse Piezo1 mRNA

GCAAACTCACGTCAAGGAGA This paper RT-PCR for mouse Piezo1 mRNA

GCACCACCAACTGCTTAG This paper RT-PCR for mouse gapdh mRNA

GGATGCAGGGATGATGTTC This paper RT-PCR for mouse gapdh mRNA

AGAAGAGCCAAGGACAGGTA This paper Human E756del amplicon

TTGCAGCCTCACCTTCTTTC This paper Human E756del amplicon

CCCCTCGCCAAGTCCACCC Chong et al., 2000 a-thalassemia a2/3.7-F

AAAGCACTCTAGGGTCCAGCG Chong et al., 2000 a-thalassemia 3.7/20.5-R

AGACCAGGAAGGGCCGGTG Chong et al., 2000 a-thalassemia a2-R

GGTTTACCCATGTGGTGCCTC Chong et al., 2000 a-thalassemia 4.2-F

CCCGTTGGATCTTCTCATTTCCC Chong et al., 2000 a-thalassemia 4.2-R

CGATCTGGGCTCTGTGTTCTC Chong et al., 2000 a-thalassemia SEA-F

AGCCCACGTTGTGTTCATGGC Chong et al., 2000 a-thalassemia SEA-R

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TGCAAATATGTTTCTCTCATTCTGTG Chong et al., 2000 a-thalassemia FIL-F

ATAACCTTTATCTGCCACATGTAGC Chong et al., 2000 a-thalassemia FIL-R

GCCCAACATCCGGAGTACATG Chong et al., 2000 a-thalassemia 20.5-F

TACCCTTTGCAAGCACACGTAC Chong et al., 2000 a-thalassemia MED-F

TCAATCTCCGACAGCTCCGAC Chong et al., 2000 a-thalassemia MED-R

Recombinant DNA

Plasmid: 3.2pc-IRES-tdTomato This paper N/A

Software and Algorithms

Prism7 GraphPad software https://www.graphpad.com

Geneious Geneious https://www.geneious.com/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ardem

Patapoutian (ardem@scripps.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal procedures were approved by the Institutional Animal Care and Use Committees of The Scripps Research Institute (TSRI).

Mice
Piezo1GOF blood, Piezo1GOF constitutive, Piezo1GOF T cells, Piezo1GOF macrophage, and Piezo1GOF RBC mice were generated by

breeding Piezo1cx/cx with vav1-cre (The Jackson Laboratory, stock# 018968) and cmv-cre (The Jackson Laboratory stock#

006054), hCD2-cre (The Jackson Laboratory stock# 027406), LysM-cre (The Jackson Laboratory stock# 004781), and EpoR-cre

(a gift from Dr. Klingmuller group at Max-Planck-Institute für Immunbiologie, Freiburg, Germany). KCa3.1 �/� mice were ordered

from The Jackson Laboratory (stock# 018826). Gain-of-function Piezo1 mice were generated and maintained on C57BL/6 back-

ground. All animals were backcrossed at least 10 generations to C57BL/6. The mice were housed in a 12hr light/dark cycle (light

from 6am to 6pm) in a temperature-controlled room (24 degree) with free access to food and water. The ages and sexes of mice

are indicated in the following method section. Littermates were used for experiments.

Cell lines and cell culture
PIEZO1KO HEK cells were grown in Dulbecco’s modified Eagle’s medium containing 4.5 mg/ml glucose, 10% fetal bovine serum,

1 3 antibiotics/antimycotics.

Human blood samples
The collection of human whole blood was approved by TSRI normal blood donor service. Fresh whole blood from TSRI normal blood

donor service was drawn and kept at ambient temperature (in heparin-coated containers), followed by osmotic fragility test and P.

falciparum infection experiments (see below) on the same day. Whole blood from Biological Specialty Corporation was delivered by

air at ambient temperature the next day after collection for further experiments.

METHOD DETAILS

P. berghei infections and parasitemia measurement by flow cytometry
Donor mice (C57BL/6) were intraperitoneally injected with 50-200 mL of erythrocytes parasitized with either P. berghei (ANKA)

GFPcon 259cl2 (provided by California Institute for Biomedical Research, La Jolla, USA) or P. berghei (ANKA) mCherry-hsp70-

Luc-eef1a (line 1868 from Leiden Malaria Research Group, the Netherlands). We used P. berghei (ANKA) mCherry-hsp70-Luc-

eef1a when infecting blood cell-specific GOF Piezo1 mice because one of the Cre driver (EpoR-cre) has EGFP expression in

RBCs so that P. berghei (ANKA) GFPcon 259cl2 cannot be used. Blood was collected by cardiac puncture from infected donors

when the parasitemia reached 4%–6% (see below). Parasitized erythrocytes were washed with sterile saline three times at

1000xg for 3min and diluted to 5x105 infected cells/ml as working solution. 200 mL working solution was intravenously injected

into the experimental mice for analysis. For GFP-fluorescence based parasitemia measurement, 1.5 mL tail blood was collected

from infected mice in 180 mL Dulbecco’s Phosphate Buffer Solution with 2% fetal bovine serum, on 96-well plates. The cytometry
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was performed on NovoCyte Flow Cytometer system (ACEA Biosciences, San Diego, CA) following manufacturer’s instructions.

Briefly, erythrocytes were selected on size for analysis by gating on forward/side-light scatter. Excitation of erythrocytes was per-

formed with a laser at a wavelength of 488 nm and emission of the green fluorescence, or a wavelength of 587nm and emission

of the mCherry was detected using a filter of 530 nm. By gating the uninfected erythrocytes and the GFP-positive infected erythro-

cytes parasitemia was calculated as the percentage of infected cells.

Blood-brain barrier and experimental cerebral malaria assay
When P. berghei infected displayed either experimental cerebral malaria (including ataxia, convulsion, paralysis and/or coma) or se-

vere anemia (immobility and pale blood color), 2% Evans Blue (Sigma-Aldrich, dissolved in sterile saline) was intravenously injected

into P. berghei infected at 5ml/kg body weight. After 45-60 min, euthanized mice were transcardially perfused with Phosphate Buffer

Solution and 4% paraformaldehyde before brains were dissected. To quantify the Evan blue (EB) contents, the infected brains (n = 5

animals per genotype) were cut into small pieces and incubated in 1ml formamide at room temperature for 36 hours, followed by

measuring the optical density at 620nm by Cytation3 (BioTek, Winooski, VT). The concentration of EB dyes was calculated from a

standard curve with the equation (Y = 0.03263*X + 0.03413, where Y = reading, X = EB concentration). To quantify the brain water

content, the infected mice (n = 5 animals per genotype) were sacrificed and brains were dissected. Brain tissues were weighted (wet

weight), then dehydrated at 56�C. The sample was re-weighted 48hr later to obtain a dry weight. The percentage of water was calcu-

lated by: BWC = [(wet weight – dry weight) / wet weight] x 100%. Note there are cases that single brains were cut into half, with each

half was used for both Evans blue and water content calculations.

Scanning Electron Microscope
Samples of mouse blood were added to ice cold buffered saline (10mM NaCl, 155mM KCl, 10mM glucose and 1 mM magnesium

chloride) before being fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer on ice. Aliquots of the fixed cells were placed on

12mm coverslips previously coated in polylysine for 30 mins. Following a buffer wash and postfixation in buffered 1% osmium te-

troxide, the samples were extensively washed in distilled water. The samples were dehydrated in graded ethanol series followed

by processing in a critical point drier (Tousimis autosamdri 815). The coverslips were then mounted onto SEM stubs with carbon

tape and sputter coated with Iridium (EMS model 150T S) for subsequent examination and documentation on a Hitachi S-4800

SEM (Hitachi High Technologies America Inc., Pleasanton CA) at 5kV.

For human RBCs, samples were fixed at room temperature with 2.5% glutaraldehyde in 0.1M cacodylate buffer followed by 1%

osmium tetroxide, and washed in water. A 10 ml drop of suspension was loaded on the sample carrier and imaged in a FEI Quanta200

FEG microscope in ESEM mode using the gaseous secondary electron detector. The stage was set-up at 2�C, the acceleration

voltage was 15kV and the working distance 10 mm. Water was then progressively removed by cycles of decreasing pressure / in-

jection of water, until reaching equilibrium at the dew point. The minimal final pressure in the chamber was 350 Pa. Pictures were

taken with a dwell time of 6 msec.

Osmotic fragility test and hematology test
Blood (for both mouse and human) was diluted at 1:8 into isotonic saline (0.9% NaCl) containing 2 mM HEPES, pH 7.4. 10 mL of the

diluted blood was pipetted into each well (in a row) on a 96-well round-bottom plate. Separate rows were used for separate samples.

225 mL tonicity solutions made from saline solutions at concentration of 0, 20, 25, 30, 35, 40, 45, 50, 55, 60, 80, and 100%. The plate

was incubated for 5min at room temperature followed by 5 min centrifuge at 1000xg. 150 mL supernatant was transferred to 96-well

flat bottom plate for absorbance reading at 540nm using Cytation3 (BioTek,Winooski, VT). The data was analyzed using 4-parameter

sigmoidal nonlinear regression. Hematological properties from mice were analyzed by hematology analyzer at Ruggeri lab, Depart-

ment of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, USA)

Gain-of-function Piezo1 mice generation
The targeting strategy was based on the NCBI transcript NM_001037298.1. Wild-type exons 45-51, including the complete 3’ un-

translated region (UTR) were flanked by loxP sites. An additional polyadenylation signal (nucleotide sequence of the synthetic polyA:

gagctccctggcgaattcggtaccaataaaagagctttattttcatgatctgtgtgttggtttttgtgtgcggcgcg) was inserted between the 30 UTR and the

distal loxP site in order to prevent downstream transcription of the mutated exon 51 in the conditional allele. The size of the loxP-

flanked region is 2.8 kb. The exons 45-51, including the splice acceptor site of intron 44 were duplicated and inserted downstream

of the distal loxP site. The R2482H mutation was introduced into the duplicated exon 51. Positive selection markers were flanked by

FRT (Neomycin resistance - NeoR) and F3 (Puromycin resistance- PuroR) sites and inserted into intron 44 and downstream of the

synthetic polyA, respectively. The targeting vector was generated using BAC clones from the C57BL/6J RPCIB-731 BAC library

and transfected into the TaconicArtemis C57BL/6N Tac ES cell line (Taconic, Hudson, NY). Homologous recombinant clones

were isolated using double positive (NeoR and PuroR) selection. The conditional knock-in allele was obtained after Flp-mediated

removal of the selection markers. The constitutive knock-in allele was obtained after Cre-mediated deletion of wild-type exons

45-51 and the synthetic polyA sequences
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Mechanical stimulation
For whole-cell recordings, mechanical stimulation was achieved using a fire-polished glass pipette (tip diameter 3–4 mm) positioned

at an angle of 80� to the recorded cells. Downwardmovement of the probe toward the cell was driven by a Clampex controlled piezo-

electric crystal microstage (E625 LVPZT Controller/Amplifier; PhysikInstrumente). The probe had a velocity of 1 mm.ms�1 during the

ramp segment of the command for forwardmotion and the stimuluswas applied for 150ms. To assess themechanical responses of a

cell, the probe was first placed as close to the cell as possible (this distance could vary from cell to cell). Then, a series of mechanical

steps in 1 mm increments was applied every 10 s, which allowed full recovery of mechanically activated (MA) currents. Threshold was

calculated by subtracting the distance at which the probe first touched the cell surface from the minimal distance at which mechan-

ically activated currents were evoked. Mechanically activated inward currents were recorded at a holding potential of �80 mV. The

inactivation kinetics at a holding potential of �80 mV of traces of currents reaching at least 75% of the maximal amplitude of current

elicited per cell were fitted with mono-exponential equation (or in some case bi-exponential equation for the rapidly-adapting cur-

rents, accordingly to previous reports (Albuisson et al., 2013) and using the fast time constant giving a value of inactivation time

(t) per responsive cell used for analysis. Channel kinetic properties betweenWT andmutant PIEZO1were compared using Student’s

t test.

Cell culture and transient transfection
PIEZO1KO HEK cells were grown in Dulbecco’s modified Eagle’s medium containing 4.5 mg/ml glucose, 10% fetal bovine serum,

1 3 antibiotics/antimycotics. Cells were plated in 6-well plates and transfected using lipofectamines 2000 (Invitrogen by Thermo-

Fisher Scientific, Carlsbad, CA), according to the manufacturer’s instruction. Human PIEZO1 or mouse Piezo1 mutations fused to

IRES-tdTomato was transfected at 1.4 mg per well (6-well plate) for fluorescent imaging plate reader (see below). Tomeasure calcium

signals, ultrasensitive sensor GCaMP6 (Chen et al., 2013) were transfected at 0.6 mg per well (6-well plate). Cells were incubated for

2 days before electrophysiology experiments or fluorescent imaging plate reader.

Fluorescent imaging plate reader (384-well format)
After transfection, the cells were dissociated from 6-well plates and re-seeded into 384-well plate, at 12,000 cells per well. The plate

was incubated for 2 days thenwashedwith assay buffer (13HBSS, 10mMHEPES, pH7.4) using a ELx405CWplate washer (BioTek,

Winooski, VT). Fluorescence wasmonitored on a fluorescent imaging plate reader (FLIPR) Tetra. A 10-mM stock solution of Yoda1 in

dimethyl sulfoxide (DMSO) was used resulting in a maximum of 1% DMSO in the assay. 10 mM Yoda1 was used in initial screens for

searching gain-of-function mutations (compared to wild-type). Positive hits were then validated by using a series of Yoda1 concen-

trations. Concentration-response curves were fitted using a sigmoidal dose–response at variable slope (GraphPad Prism, La

Jolla, CA).

Real time quantitative PCR.
Total RNA was isolated from mouse whole blood by Quick-RNA Whole Blood (Zymo Research, Irvine, CA). 500 ng total RNA was

used to generate 1st strand cDNA using the Quantitect reverse

transcription kit (QIAGEN). Real time PCR assays were set up using GoTaq qPCRMaster Mix (Promega, MadisonWI). The reaction

was run in the ABI 7900HT fast real time system using 1 ml of the cDNA in a 20 ml reaction according to themanufacturer’s instructions

in triplicates. Primers were designed for target gene (mPiezo1) and reference gene (Gapdh). See Key Resources Table for primer in-

formation. Calibrations and normalizations were done using the 2-DDCT method, where DDCT = ((CT(target gene) -CT (reference

gene)) - (CT (calibrator) - CT (reference gene)).

CD4+ and CD8+ T cell isolation
MoJoSort Mouse CD4 and CD8 Nanobeads kits (BioLegend, San Diego, CA) were used for magnet-based cell separation of CD4/8+

T cells. We performed the procedures based on instructions provided by the kit manual.

Population genetic analysis
Weobtainedminor allele and genotype frequencies from the Exome Aggregation Consortium (ExAC) and the 1000Genomes Project.

2504 genomes were analyzed, 661 from African and 1843 from non-African ancestries. Wright’s fixation index (FST), a measure of

population differentiation, was calculated as follows:

FST =
s2
s

p ð1� pÞ
where p is the mean allele frequency and s2 is the allele frequenc
s y variance between the populations. The 1000 Genomes browser

(http://phase3browser.1000genomes.org/index.html) was used to determine that no alleles were in linkage disequilibrium with

E756del (estimated r2 values were < 0.05). Hardy-Weinberg equilibrium was estimated using the classical binomial expansion to

determine the expected genotype frequencies and x2 tests.
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PIEZO1 sequences were obtained from the following sources: modern humans (Homo sapiens, GenBank NG_042229.1), Nean-

derthals (Homo neanderthalensis, Neanderthal Ensembl ENSG00000103335), and Denisovans (Homo sapiens ssp. Denisova, previ-

ously generated reads (Meyer et al., 2012; Reich et al., 2010) aligning to humans [GRCh37/hg19] using the UCSC Genome Browser,

(Kent et al., 2002)). All non-human primate amino acid sequences were obtained from GenBank. The sequences were aligned in

Geneious using MAFFT (Katoh et al., 2002).

Genotyping in African American blood donors
Genotyping E756del carriers by sequencing

25 whole blood samples (5-10ml) were collected fromNormal Blood Donor Service (The Scripps Research Institute, La Jolla, CA) and

Biological Specialty Corporation (Colmar, PA), approved by institutional regulations. 200ul of whole blood samples were used for

genomic DNA isolation by QIAamp DNA Blood Mini Kit (QIAGEN, Germany). A �200bp PCR amplicon that contained E756 locus

was generated for sequencing E756del or wild-type allele (forward primer: 50CAGGCAGGATGCAGTGAGTG30, reverse primer:

50GGACATGGCACAGCAGACTG30. Reverse primer was used for sequencing).

Screening for hemoglobin mutations by sequencing

PCR amplicons that contained potential sickle cell mutation sites were generated (Figure S5). Forward primers: 50AGAA

GAGCCAAGGACAGGTA30; reverse primers: 50TTGCAGCCTCACCTTCTTTC30. Reverse primer was used for sequencing.

Screening for a-thalassemia by multiplex PCR

Each 50 mL reaction contained 20 mmol/L Tris-HCl pH 8.4, 50 mmol/L KCl, 1.5 mmol/L MgCl2, 1 mol/L betaine (SIGMA, St. Louis,

MO), 0.2 mL of each primer (see below) 0.2mmol/L of each dNTP, 2.5 units of polymerase, and 50-100 ng of genomic DNA. Reactions

were carried out on a thermal cycler, with an initial 5-minute denaturation at 95�C, 30 cycles of 97�C for 45 s, 60�C for 1 minute 15 s,

72�C for 2 minutes 30 s, and a final extension at 72�C for 5 minutes.

Primers:

a2/3.7-F CCCCTCGCCAAGTCCACCC, 3.7/20.5-R AAAGCACTCTAGGGTCCAGCG, a2-R AGACCAGGAAGGGCCGGTG, 4.2-F

GGTTTACCCATGTGGTGCCTC, 4.2-R CCCGTTGGATCTTCTCATTTCCC, SEA-F CGATCTGGGCTCTGTGTTCTC, SEA-R AGCCC

ACGTTGTGTTCATGGC, FIL-F TGCAAATATGTTTCTCTCATTCTGTG, FIL-R ATAACCTTTATCTGCCACATGTAGC, 20.5-F GCCC

AACATCCGGAGTACATG, MED-F TACCCTTTGCAAGCACACGTAC, and MED-R TCAATCTCCGACAGCTCCGAC

P. falciparum culture
P. falciparum Dd2 strain parasites were cultured under standard conditions (Trager and Jensen, 1976), using RPMI media supple-

mented with 0.05 mg/ml gentamycin, 0.014 mg/ml hypoxanthine (prepared fresh), 38.4 mM HEPES, 0.2% Sodium Bicarbonate,

3.4 mM Sodium Hydroxide, 0.05% O+ Human Serum (Denatured at 56�C for 40 min; Interstate Blood Bank, Memphis, TN) and

0.0025% Albumax). Human O+ whole blood was obtained from TSRI Normal blood donor service (La Jolla, CA). Leukocyte-free

erythrocytes are stored at 50% hematocrit in RPMI-1640 screening media (as above, but without O+ human serum and with 2x

albumax concentration) at 4�C for one to three weeks before experimental use. Cultures were monitored every one to two days

via Giemsa-stained thin smears.

Parasitemia Determination
Asynchronous P. falciparum parasites (Dd2 strain) were cultured in standard conditions (as described above), then synchronized

twice via sorbitol (Lambros and Vanderberg, 1979) and grown to 7%parasitemia at the late trophozoite/schizont stage. Patient blood

was obtained from TSRI Normal blood donor service, washed and centrifuged three times (at 800 x g for 5 min at 4�C) with RPMI only

and once with complete media (as above) (Elias and Greene, 1979), with any visible buffy coat being removed after each spin. All

blood samples were given a numerical designation and allele status was not determined until after all data collection was completed.

All genotypes were blinded from experimenters. (Basic Malaria Microscopy, 2010)

Parasite growth was determined in two independent ways: absolute parasitemia determination via thin-blood smear after Giemsa

staining, and inferred parasite growth via the SYBR Green I-based fluorescence assay (Johnson et al., 2007). For the absolute para-

sitemia determination by thin blood smear, parasites were established, starting from the 7% parasitemia cultures above and diluted

using the corresponding patient RBCs, in a 10 mL culture at 5% hematocrit and 0.5% parasitemia (the same as for the Giemsa ab-

solute parasitemia determination assay). Cultures were then grown for 4 days and parasitemia measurements were taken every

2 days. For the SYBR green I inferred parasitemia determination assay, when parasite burden is estimated based upon DNA content,

parasites were cultured in 100 mL volumes in 96-well plates at 5% hematocrit and 0.5%parasitemia with at least 5 replicates per time

point. Parasites were plated on three 96-well black plates with clear bottoms (Fisher Scientific). (One surrogate plate was used for

measurement every two days, with DNA content determined by SYBR Green I incorporation of lysed parasites). Relative parasitemia

was determined by fluorescence measurement, background was determined using uninfected RBCs and subtracted, then relative

parasite burdenwas determined via normalization against a knownO+WT blood sample. In both cases all measurements were taken

for all samples, genotypes were then assigned to numbered patient samples, wild-type versus heterozygote samples were averaged

at each time point, and average parasitemia values were compared.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
All of the data are presented as the mean ± SEM or SD and represent at least 3 independent experiments. Statistical analysis, sig-

nificance level and n values are described in the Figure or Figure legends. For mouse experiments n = number of animals and at least

n = 4 were used. For human blood experiment, n = number of individual blood samples. For comparison, we performed two-tailed

Student’s t test, where p < 0.05 is considered statistically significant. For all datasets, we used Prism7 to perform the statistical

analysis.
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Supplemental Figures

Figure S1. Piezo1 GOF Mice Characterization, Related to Figure 1

(A) Modified nucleotides in the last exon of piezo1 cDNA from homozygous Piezo1GOF blood (lower). GG to AC change compared to wild-type (upper).

(B) Piezo1 transcript levels in Piezo1GOF blood mice, p > 0.05 (One-way ANOVA test).

(C) Spleens from Piezo1GOF blood mice are significantly larger than wild-type. ****p < 0.0001, Student’s t test, both compared to wild-type (n = 3 for each group).

Data are presented as means ± SEM.



Figure S2. Piezo1GOF blood/KCa3.1�/� Mice RBC Phenotype, Related to Figure 3

Piezo1GOF blood/KCa3.1�/�mice had normal RBC osmotic fragility as wild-type (p > 0.05), which are significantly larger than heterozygousPiezo1GOF blood mice

(****p < 0.0001). Data are presented as means ± SEM.



Figure S3. Piezo1GOF RBC and Piezo1GOF T cells Mice Characterization, Related to Figure 4

(A) Piezo1GOF RBC mice had RBC dehydration, similar to Piezo1GOF blood (***p < 0.001 and ****p < 0.0001 compared to wild-type, Student t test), while

Piezo1GOF T cells had normal RBC osmotic fragility (p > 0.05 compared to wild-type, Student t test).

(B) cDNA showed that CD4+ and CD8+ T cells expressed Piezo1mRNA with gain-of-function mutation (AC in red square) in homozygous Piezo1GOF T cells mice

(lower panel), whereas wild-type and homozygous Piezo1GOF RBC mice expressed wild-type (GG in red square) mRNA (upper and middle panels). Data are

presented as means ± SEM.



Figure S4. Comparative Genomics, Related to Figure 6

E756del locus in non-human primates, pre-modern humans, and modern humans.

(A) An amino acid alignment of human and non-human primate PIEZO1 sequences (partial). Highlighted amino acids indicate consensus among all sequences

and dashes indicate gaps.

(B) Sequences of individual Neanderthal and Denisovan reads (see STARMethods) were aligned to human chromosome 16. Shown is the region near the E756del

locus in PIEZO1.



(legend on next page)



Figure S5. Genotypes of African American Blood Donors, Related to Figure 7

(A) Screening for E756del in 25 donors. Upper panel: sequence of a�200bp PCRamplicon that contains E756 locus in control donors showed 7 repeats of CTC (in

squared brackets). Middle panel: E756del heterozygous carriers showed an ambiguous base at the 7th CTC repeat (in squared brackets). Lower panel: indi-

vidually cloned PCR amplicon from carriers showed the presence of E756del.

(B) Hbb (b-globin) gene from 25 donors showed normal sequence, excluding HbC, HbS (first brackets) and HbE (second brackets).

(C) All 25 donors had normal PCR production (�1.9kb band) for a-globin gene in a multiplex PCR screening protocol.
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