
Databases and ontologies

BioThings SDK: a toolkit for building high-performance

data APIs in biomedical research

Sebastien Lelong, Xinghua Zhou, Cyrus Afrasiabi, Zhongchao Qian,

Marco Alvarado Cano, Ginger Tsueng , Jiwen Xin, Julia Mullen, Yao Yao,

Ricardo Avila, Greg Taylor, Andrew I. Su and Chunlei Wu *

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA

*To whom correspondence should be addressed.

Associate Editor: Zhiyong Lu

Received on October 20, 2021; revised on December 10, 2021; editorial decision on January 4, 2022; accepted on January 8, 2022

Abstract

Summary: To meet the increased need of making biomedical resources more accessible and reusable, Web
Application Programming Interfaces (APIs) or web services have become a common way to disseminate knowledge
sources. The BioThings APIs are a collection of high-performance, scalable, annotation as a service APIs that auto-
mate the integration of biological annotations from disparate data sources. This collection of APIs currently includes
MyGene.info, MyVariant.info and MyChem.info for integrating annotations on genes, variants and chemical com-
pounds, respectively. These APIs are used by both individual researchers and application developers to simplify the
process of annotation retrieval and identifier mapping. Here, we describe the BioThings Software Development Kit
(SDK), a generalizable and reusable toolkit for integrating data from multiple disparate data sources and creating
high-performance APIs. This toolkit allows users to easily create their own BioThings APIs for any data type of inter-
est to them, as well as keep APIs up-to-date with their underlying data sources.

Availability and implementation: The BioThings SDK is built in Python and released via PyPI (https://pypi.org/pro
ject/biothings/). Its source code is hosted at its github repository (https://github.com/biothings/biothings.api).

Contact: cwu@scripps.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Concerns for reproducibility and the ethical considerations in own-
ership of publicly funded research has led to an increased effort to
make biomedical research papers and data more accessible. While
the open access/open data movement made biomedical research data
more accessible, it did not enhance its re-usability. The FAIR data
guiding principles were formed to address some of the issues and
limitations of the open data movement (Wilkinson et al., 2016). For
data to be both accessible, interoperable and reusable, metadata
standardization is needed. General online repositories like Figshare
or Zenodo impose basic metadata requirements which help to stand-
ardize some basic metadata, but a lot of biomedical databases and
repositories utilize their own metadata schema (European
Organization for Nuclear Research, 2013; Singh, 2011). In addition
to existing databases and repositories, web-based Application
Programming Interfaces (APIs) play an important role in making
biomedical research data more accessible and reusable and often
have their own fragmented metadata.

We previously created high-performance, scalable, annotation as
a service APIs that aggregated and provided gene and variant

metadata (i.e. annotations) (Xin et al., 2016): MyGene.info (Xin
et al., 2010) and MyVariant.info (Xin et al., 2014). These APIs ag-
gregate identifiers and other metadata from gene-specific or variant-
specific resources and serve up these annotations as a RESTful ser-
vice effectively increasing the interoperability of data from various
gene and variant specific resources. This allows users to address two
key issues in bioinformatics pipelines that make keeping data up-to-
date difficult: (i) data storage, (ii) data fragmentation (i.e. down-
loading, tracking and updating data, versus constantly updating
parsers for multiple resources). Our team has since built similar
APIs for chemical entities [MyChem.info (Lelong et al., 2015)], dis-
ease entities [MyDisease.info (Xin et al., 2015)] and taxonomy
[t.biothings.io/ (Lelong et al., 2017)]. These APIs are collectively
referred to as the BioThings APIs. Calling these BioThings APIs en-
able users to quickly perform id conversion and knowledge retrieval
for ease of querying the respective data resources. By relying on
Annotation as a service APIs, users reduce the need to download
and store data from multiple resources, track and update said data
locally, and resolve changes from multiple resources. This enhances
the accessibility, interoperability and reusability of data scattered
across multiple resources.

VC The Author(s) 2022. Published by Oxford University Press. 2077

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(7), 2022, 2077–2079

https://doi.org/10.1093/bioinformatics/btac017

Advance Access Publication Date: 10 January 2022

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/7/2077/6502302 by R
alph R

eisfeld user on 03 M
ay 2024

https://orcid.org/0000-0001-9536-9115
http://orcid.org/0000-0002-9859-4104
https://orcid.org/0000-0002-2629-6124
https://pypi.org/project/biothings/
https://pypi.org/project/biothings/
https://github.com/biothings/biothings.api
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data
https://academic.oup.com/


The BioThings APIs were built with architecture demonstrated to
be flexible and scalable. We currently have APIs that cover five differ-
ent types of biomedical data out of the potentially hundreds if not
thousands of biomedical entity types. To increase the FAIRness of dif-
ferent biomedical entity types, we encourage and empower other re-
search groups to create and share their own APIs using the BioThings
architecture. We reviewed the process of creating BioThings API,
compared the architecture and applied the best practices and lessons
learned from the process to create a python-based Software
Development Kit (SDK). The SDK allows users to create a high-
performance API once the user provides a data source parser. Once
the API is created, the BioThings API client can be adapted for use
with the API. In addition, the BioThings SDK includes a data source
management console (i.e. the dashboard) which helps to handle data
source monitoring and download scheduling (tasks important for
keeping aggregated data up-to-date). Overall, we provide BioThings
SDK as a system to rapidly increase the availability of high-quality,
sustainable production-ready APIs to the research community.

2 Implementation

The SDK consists of a data hub component and a web API component
(Fig. 1). The data hub processes each data source (‘dump’) and stores
the parsed JSON objects (‘upload’) in MongoDB (MongoDB, 2021).
All JSON objects can then be merged across data sources (based on the
same primary keys) and indexed in Elasticsearch (Tong, 2013). The
use of Elasticsearch ensures scalability allowing easy addition of nodes
to handle increasing volumes of data and queries (Elastic.co, 2021).
The web API handles the user’s Elasticsearch queries and returns back
the query results. The API is built with the Python-based Tornado web
framework (Tornadoweb.org, 2021), which is non-blocking and suit-
able for implementing high-performance APIs. Both the tornado web
servers and the Elasticsearch cluster can be individually scaled up on
demand as the incoming requests or data scale increase. In theory, the
maximum expected throughput is limited by the capacity of the cloud-
providers (like AWS), not the BioThings SDK itself.

The data hub also includes a set of utilities to monitor the data
source files and triggers the automated data-downloads data-parsing
and releasing. This feature greatly simplifies the data-processing
burden and keeps the data always up-to-date. The SDK is regularly
released as a package via PyPI and its source code is hosted at the
github repository. Detailed documentation for the BioThings
SDK (https://docs.biothings.io), a full tutorial, and preconfigured
Dockerized development environment and a web interface (called
‘BioThings Studio’) are also provided (https://docs.biothings.io/en/
latest/tutorial/studio.html#tutorial).

The minimal hardware requirements for setting up an API using
BioThings SDK is moderate (>8 GB memory and >10 GB storage)
and can be run on an average laptop for the development.
Optimally, computing power would be scaled in accordance with
the amount of data processed.

3 Results

To create a RESTful API out of a data source (or add a data source
into an existing API), a ‘data plugin’ must be written. The data

plugin will need to follow a simple but specific architecture consist-
ing of three primary python modules: the dumper.py, which tells the
system where, how, and even how frequently to get the data; the
parser.py, which tells the system how to parse and transform
the data; and the upload.py, which tells the system how to load and
merge the data into MongoDB. The BioThings SDK comes packaged
with many helper functions which may be called in the data plugin
files to reduce the amount of coding needed for common or redun-
dant actions. For example, the SDK has helpers for downloading
data via ftp, http, git, google drive and more that can be used in the
data plugin dumper script. In most straightforward scenarios, a data
plugin can include just a parser.py and a manifest.json file with
sufficient metadata (Lelong, 2020a), however, with dedicated
dumper.py and upload.py, users have additional fine-tuned controls
to customize the desired behavior (Lelong, 2020b). Once the data
plugin has been created, it can be registered within the dashboard.
Additional examples on writing plugins can be found in the afore-
mentioned full tutorial.

Registering the plugin within the dashboard allows the operator
to manually trigger or schedule data updates and monitor the plugin
for issues with uploading, merging and indexing (Supplementary
Fig. S1). If the SDK is used to create an API for a single data source,
each upload for the data into MongoDB can be considered a single
build and can be configured as such. If there are multiple data sour-
ces, the build can be configured to handle the upload and merging of
the data sources. Unique identifiers are needed for the Elasticsearch
index, and the SDK will merge data from different sources whenever
duplicate identifiers are found. For example, if a BioThings API like
MyGene.info consisted of only a single data source (NCBI Gene),
then each upload from the data plugin would have only the annota-
tions available from NCBI entrez and each build would consist only
of updates from NCBI Gene. In actuality MyGene.info provides
gene-specific annotations from NCBI Gene, Ensembl, Uniprot,
NetAffx, PharmGKB, UCSC, CPDB, ClinGen, REACTOME and
more. Since each data source has a different frequency with which
updates are released, the data plugins are scheduled to update
according to the releases. By mapping the annotations from each
source to NCBI gene or Ensembl ids, any update will trigger a new
merge and build with each JSON object in the database containing
annotation data from all relevant data sources. Build configurations
can be created and edited directly from the dashboard
(Supplementary Fig. S2).

Once the build has been completed, it will be sent to
Elasticsearch for indexing. Elasticsearch can be customized to
map/index specific fields/properties and this customization allows
for the creation of customized API queries. Fields or properties
not indexed by Elasticsearch will still exist within the data but
cannot be queried. The SDK dashboard also has analysis tools
for inspecting the data to automatically generate a potential
mapping file for Elasticsearch. After the build is indexed by
Elasticsearch, a new API can be created from within the dash-
board (Supplementary Fig. S3).

4 Conclusions

We have created an SDK for building RESTful APIs for the biomed-
ical research community. The BioThings SDK has been used to build
over 50 APIs which collectively includes and exposes over 1.7 billion
records (Supplementary Table S1). The SDK is flexible enough to
create APIs for metadata (annotations), data, ontologies and more.
Though the usage of these APIs remains largely untracked, the aver-
age monthly requests for the 5 APIs where usage was tracked
exceeded 53 million from over 20 000 unique IPs. In addition, the
various APIs serve data to other tools, projects and resources such
as the Monarch Initiative, CIViC, MyGene2, Open Humans and
more. The BioThings SDK comes with a dashboard that allows
the operator to easily manage some of the more redundant data
wrangling tasks. Although only Python is currently supported, we
are currently exploring options for supporting other languages in
the future.

Fig. 1. The overall architecture of the BioThings SDK. Its data hub (backend) com-

ponent handles data source monitoring, parsing/uploading and then merging across

all data sources. Its web API (frontend) component handles data indexing and proc-

esses user queries

2078 S.Lelong et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/7/2077/6502302 by R
alph R

eisfeld user on 03 M
ay 2024

https://docs.biothings.io
https://docs.biothings.io/en/latest/tutorial/studio.html#tutorial
https://docs.biothings.io/en/latest/tutorial/studio.html#tutorial
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac017#supplementary-data


Funding

This work was supported by the US National Institute of Health (https://

www.nih.gov/) [OT2TR003445 to C.W., R01GM083924 to A.I.S. and

C.W.]. The funders had no role in study design, data collection and analysis,

decision to publish or preparation of the manuscript.

Conflict of Interest: none declared.

References

Elastic.co. (2021) Scalability and resilience: clusters, nodes, and shards j
Elasticsearch Guide [7.15] j Elastic. https://www.elastic.co/guide/en/elastic

search/reference/current/scalability.html (29 November 2021, date last

accessed).

European Organization for Nuclear Research. (2013) Zenodo. CERN. https:

//doi.org/10.25495/7gxk-rd71.

Lelong,S. et al. (2015) MyChem.info j Chemical and Drug Annotation as a

Service. MyChem.info. http://mychem.info/ (3 August 2021, date last

accessed).

Lelong,S. et al. (2017) BioThings Taxonomy API. https://t.biothings.io/ (1

October 2021, date last accessed).

Lelong,S. (2020a) MVCGI BioThings Studio data plugin demo. https://github.

com/sirloon/mvcgi (1 October 2021, date last accessed).

Lelong,S. (2020b) MVCGI Advanced BioThings Studio data plugin demo. https://

github.com/sirloon/mvcgi_advanced (1 October 2021, date last accessed).

MongoDB. (2021) What Is MongoDB? https://www.mongodb.com/what-is-

mongodb (3 August 2021, date last accessed).

Singh,J. (2011) FigShare. J. Pharmacol. Pharmacother., 2, 138–139.

Tong,Z. (2013) What is an Elasticsearch Index? j Elastic. Elastic.co. https://

www.elastic.co/blog/what-is-an-elasticsearch-index (3 August 2021, date

last accessed).

Tornadoweb.org. (2021) Tornado Web Server – Tornado 6.1 documentation.

https://www.tornadoweb.org/en/stable/ (3 August 2021, date last accessed).

Wilkinson,M.D. et al. (2016) The FAIR Guiding Principles for scientific data

management and stewardship. Sci. Data, 3, 160018.

Xin,J. et al. (2010) MyGene.info j Gene Annotation as a Service.

MyGene.info. http://mygene.info/ (3 August 2021, date last accessed).

Xin,J. et al. (2014) MyVariant.info j Variant Annotation as a Service.

MyVariant.info. http://myvariant.info/ (3 August 2021, date last accessed).

Xin,J. et al. (2015) MyDisease.info j Disease Annotation as a Service.

MyDisease.info. http://mydisease.info/ (3 August 2021, date last accessed).

Xin,J. et al. (2016) High-performance web services for querying gene and vari-

ant annotation. Genome Biol., 17, 91.

BioThings SDK 2079

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/7/2077/6502302 by R
alph R

eisfeld user on 03 M
ay 2024

https://www.nih.gov/
https://www.nih.gov/
https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html
http://mychem.info/
https://t.biothings.io/
https://github.com/sirloon/mvcgi
https://github.com/sirloon/mvcgi
https://github.com/sirloon/mvcgi_advanced
https://github.com/sirloon/mvcgi_advanced
https://www.mongodb.com/what-is-mongodb
https://www.mongodb.com/what-is-mongodb
https://www.elastic.co/blog/what-is-an-elasticsearch-index
https://www.elastic.co/blog/what-is-an-elasticsearch-index
http://&hx0026;Theta;Tornadoweb.org
https://www.tornadoweb.org/en/stable/
http://mygene.info/
http://myvariant.info/
http://mydisease.info/

