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ABSTRACT: Amidst the proteomes of human tissues lie
subsets of proteins that are closely involved in conserved
pathophysiological processes. Much of biomedical research
concerns interrogating disease signature proteins and defining
their roles in disease mechanisms. With advances in proteomics
technologies, it is now feasible to develop targeted proteomics
assays that can accurately quantify protein abundance as well as
their post-translational modifications; however, with rapidly
accumulating number of studies implicating proteins in diseases,
current resources are insufficient to target every protein without
judiciously prioritizing the proteins with high significance and
impact for assay development. We describe here a data science
method to prioritize and expedite assay development on high-
impact proteins across research fields by leveraging the biomedical literature record to rank and normalize proteins that are
popularly and preferentially published by biomedical researchers. We demonstrate this method by finding priority proteins across
six major physiological systems (cardiovascular, cerebral, hepatic, renal, pulmonary, and intestinal). The described method is
data-driven and builds upon the collective knowledge of previous publications referenced on PubMed to lend objectivity to target
selection. The method and resulting popular protein lists may also be useful for exploring biological processes associated with
various physiological systems and research topics, in addition to benefiting ongoing efforts to facilitate the broad translation of
proteomics technologies.

KEYWORDS: data science, bibliometrics, semantics, proteomics translation, common proteins, human tissue convergence,
targeted proteomics

■ INTRODUCTION

The human proteome comprises interweaved dynamic networks
whose differential regulation provides important insights into
cellular physiology and disease mechanisms. Targeted proteo-
mics approaches such as multiple-reaction monitoring mass
spectrometry (MRM-MS) can now reliably analyze proteins with
sensitivity and specificity that rival immunobiological approaches
without being restricted by the availability of antibody pairs.1−3

MRM assays can be viewed as reagents, similar to ELISA or
Western blots, that once developed can be used broadly by the
scientific community. Nevertheless, the adoption of targeted
proteomics remains unsatisfactory, and verified assays are
available only for few potential disease proteins and biomarker
candidates (see PeptideAtlas/PASSEL for list).4 For instance, it

has been estimated that the human plasma proteome contains
about 4000 canonical proteins based on the latest Human Plasma
PeptideAtlas and Guidelines requiring two uniquely mapped
peptides of at least nine amino acids in length with excellent
spectra. The majority of these proteins currently cannot be
readily targeted with MRM-MS experiments to support
biomarker discovery. The Plasma Proteome Database catalogues
only 279 proteins (∼7% of the proteome) with developedMRM-
MS assays.5,6 A bottleneck in proteomics translation is thought to
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be the time- and labor-intensive nature of method development,
a task typically undertaken by relatively few specialized
laboratories. The success of technology dissemination therefore
hinges upon effectively focusing limited resources on select
proteins that have high likelihood of having biomedical values or
are thus aligned with the interests of biomedical research fields.
Identifying the quintessential proteins can facilitate judicious

investments of resources and broader applications of proteomics
to advance biomedical research. Such efforts may also benefit
gene annotation, database curation, and other fields where
resources are limited. Nevertheless, which proteins may
constitute good candidate targets is often unclear, and thus far
few systematic methods have been demonstrated to objectively
identify them. This challenge has spurred recent works from the
Biology/Disease Human Proteome Project (B/D-HPP) in the
Human Proteome Organization (HUPO). The core mission of
the B/D-HPP is to promote broad application of proteomics to
researchers looking to understand the molecular mechanisms of
human disease.7 Comprising the B/D-HPP are individual
initiatives including the Cardiovascular Initiative,8 the Eye
Proteome Project,9 and the Diabetes Proteome Project,2 each
of which is tasked to promote proteomics adoption in a specific
discipline.7 The B/D-HPP initiatives have developed several
approaches to vectorize quantitative assay development, among
which is to catalog significantly altered proteins from seminal

proteomics data sets to identify “priority proteins” that merit
follow-up validations by virtue of their disease implications.10

The B/D-HPP maintains one such collection of these priority
protein lists on the PeptideAtlas Web site (https://db.
systemsbiology.net/sbeams/cgi/PeptideAtlas/proteinList), rec-
ommending that these proteins be considered for precedence in
method development. Other strategies have also been proposed,
such as to aggregate multiple data sets to infer network hub
proteins, which because of their high connectivity to other
proteins may likelier represent bona fide disease proteins.11,12

Although these approaches can reveal interesting protein
candidates, they may be limited by the coverage of the
proteomics data sets selected and the models on which the
experiments were performed. We hereby suggest a comple-
mentary data science-based methodology to identify lists of
“popular proteins” by taking in the totality of publications
referenced on PubMed. Our method is applicable to diverse
fields of inquiry (e.g., cardiovascular, hepatic, cancer, etc.)
regardless of their experimental approach. A distinguishing
feature is that no subjective classification or inference on
functional significance is performed at the step of target
prioritization. Instead, the collective intelligence of the scientific
community is crowdsourced to identify which proteins emerge as
biologically significant by virtue of their selective research
interest as a whole. The approach is based on the hypothesis that

Figure 1.Topic-specific publication counts in six major organ systems. (A) Computational workflow to automatically derive the number of publications
referenced to proteins in our custom PubMed queries. System-relevant publications are retrieved from PubMed with specific search terms (List 1). A
cross-reference between PMIDs and GeneIDs is retrieved from the NCBI FTPWeb site (List 2). A custom software tool suite matches List 2 to List 1.
The software counts the unique occurrences of each protein in each year of a user-specified species and converts GeneID to UniProt/SwissProt
accessions. Lastly, the software computes the normalized copublication distance (NCD) between a protein with the queried topic. (B) Summary
statistics of mouse (orange) and human (blue) proteins referenced to publications in each system. Left: the total number referenced publications. Right:
the total number of distinct proteins with at least five publications for each system. (C) The number of topic-specific publications per protein resembles a
logarithm−logarithm relationship with regard to protein rank. The number of referenced article decreases sharply after the top 50 proteins in the queried
tissues, with the next 50 proteins accounting for approximately one-third of publications as the first 50.
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individual biomedical researchers will collectively make rational
decisions to preferentially pursue studies on proteins or pathways
that are deemed to be biologically significant, based on either
their expert opinions or other sources of data. The overall
research popularity of a protein therefore provides essential
information on its significance in a particular biological system or
concept.

■ EXPERIMENTAL PROCEDURES

To estimate protein popularity within various fields, we
interrogated tissue-specific publications from the >24 million
literature records on PubMed using specific search terms
(without restriction to the publication date) on the PubMed

Web site between May and July of 2015. For instance,
publications related to the cardiovascular system were queried
with the search terms (“heart” or “cardiac” or “cardiovascular”),
which was automatically resolved by PubMed to include any
identified MeSH terms and synonyms such that the query reads
(“heart”[MeSH Terms] OR “heart”[All Fields]) OR (“heart”[-
MeSH Terms] OR “heart”[All Fields] OR “cardiac”[All Fields])
OR (“blood vessels”[MeSH Terms] OR (“blood”[All Fields]
AND “vessels”[All Fields]) OR “blood vessels”[All Fields] OR
“vascular”[All Fields]) OR (“cardiovascular system”[MeSH
Terms] OR (“cardiovascular”[All Fields] AND “system”[All
Fields]) OR “cardiovascular system”[All Fields] OR “cardio-
vascular”[All Fields])). Cerebral system-related publications

Figure 2. Identifying topic-relevant significant proteins using normalized copublication distance (NCD). (A) The multiplicity of occurrence of the top
50 proteins in each of the six examined systems is shown. Proteins with a multiplicity of six (e.g., TP53) are found in the top 50 most published proteins
in all six examined systems and are colored in dark brown. Proteins with a multiplicity of one (e.g., BDNF in the cerebral system) are in the top 50 in only
one of the six organ systems queried. (B) NCD normalizes the number of referenced publications in a particular topic for a particular protein by the total
number of referenced publications of that protein to any topic. In contrast with ranking proteins by total publication count, normalized copublication
distance down-ranks proteins that are of general interest with large numbers of publications in multiple fields (e.g., certain proteins in tumorigenesis
pathways) and promotes query-specific proteins, such that top-ranked proteins by NCD (right) are mostly organ-specific. (C) The distribution of NCD
values for proteins in a query (black line) follows a normal Gaussian distribution (red line), with a mean of 1.0 and standard deviation (sd) of 0.1. (D)
The graphs show the number of publications for each protein referenced in a queried tissue (ordinates), plotted against the NCD between the protein
and the tissue (abscissae). Line and shade: locally weighted scatterplot smoothing regression and 95% confidence interval thereof, respectively. Proteins
with significant NCD (Z ≤ −1.96) are colored in blue. The top protein in each query is labeled in red text.
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were similarly queried, using the search term (“brain” or
“cerebral”), pulmonary system with (“lung” or “lungs” or
“pulmonary”), hepatic system with (“liver” or “hepatic”), renal
system with (“kidney” or “kidneys” or “renal”), intestinal system
with (“gut” or “intestine” or “intestinal”); the queries were
similarly resolved by the PubMed query system to automatically
include MeSH term definitions.
We use the Gene2PubMed file to match specific PubMed

queries to GeneIDs as previously described13 and count the
number of publication records (PMIDs) matching to a unique,
species-specific GeneID within a queried topic (e.g., all returned
publications from “brain or cerebral”)14 (Figure 1A). The
Gene2PubMed file was retrieved on the NCBI FTP server at the
time of analysis (June 17, 2015 release), which contained
8 022 914 gene-publication references and was manually curated
by the National Library of Medicine (NLM) based on PubMed
records as well as information from user submission. To
determine the relevance between protein and topic, we define
the normalized copublication distance (NCD) of a protein P
with a particular queried topic T as

=
| | | | − | ∩ |

| | − | | | |
T P T P

F T P
NCD

[max(log , log ) log ]

[log min(log , log )]P T,
10 10 10

10 10 10

where T is the set of publications that are linked to any protein
within a particular taxonomy and that are retrieved from a
queried topic; P is the set of publications linked to a particular
protein in all studies; F is the set of all publications linked to any
proteins in any topics, containing all PMIDs in the
Gene2PubMed file within a particular taxonomy where T ⊆ F
and P ⊆ F; and T ∩ P is the set of publications linked to a
particular protein within a queried topic. From each query, the
software outputs the NCBI GeneIDs that have corresponding
UniProt accessions (thus excluding noncoding genes), along
with their associated publication frequency and NCD. This
method is extended to define the pairwise NCD between two
proteins within a topic query such that

* =
| ∩ | | ∩ | − | ∩ ∩ |
| | − | ∩ | | ∩ |
T P T P T P P

T T P T P
NCD

[max(log , log ) log ]

[log min(log , log )]P P T, ,
10 1 10 2 10 1 2

10 10 1 10 2
1 2

For postanalyses, we retrieve Gene Ontology terms associated
with the analyzed proteins via the European Bioinformatics
Institute QuickGO API. Additional annotations were acquired
from Ensembl using the R/Bioconductor package biomaRt.
Significant enrichment of annotations in a protein list over the
background was calculated with the hypergeometric test, with
adjustment of false discovery rate using the Benjamini−
Hochberg method. Proteins analyzed are species-specific,
identified using their species-specific Entrez GeneIDs or UniProt
accessions. Where proteins are compared between species,
orthology between mouse and human is defined according to
NCBI Homologene.17

A web version of the software tool to retrieve publication count
and calculate corresponding NCDs is available at https://heart.
shinyapps.io/PubPular/ for free academic and nonprofit use.
Documentations are available at the same location.

■ RESULTS
Our overarching goal is to systematically establish lists of highly
published proteins pertaining to individual biomedical disci-
plines, for which expedited quantitative assay and other focused
resource developments would create immediate beneficial
impact to large numbers of researchers. We recently demon-

strated that the PubMed literature record and the Gene2PubMed
file may be used to estimate the popularity of a protein in the
heart13 and in the eye.9 Here we greatly expanded on this
approach to the research focus in six major physiological
systemscerebral, cardiovascular, intestinal, hepatic, renal, and
pulmonary (Figure 1A). We queried >24 million PubMed
records for articles related to each system going back to 1966.
On average, each query returns ∼0.6−1.6 million articles, out

of which ∼10 000 to∼40 000 unique articles are referenced to at
least one protein (Figure 1B). The six queried systems are on
average associated with a total of ∼10 000 proteins (min: 4836;
max: 16570), with an average of ∼1900 (min: 768; max: 3774)
proteins being referenced to five or more publications. The
protein counts are in the decreasing order of cerebral >
cardiovascular > hepatic > renal > pulmonary > intestinal
(Figure 1B). We observe that the top 50 proteins (ranked
according to publication number) in each system disproportion-
ally account for ∼17% of all referenced publications in each
system. Publication counts decrease sharply thereafter, with the
next 50 proteins (rank 51−100) accounting for approximately
only one-third as many publications as the top 50 proteins (∼5%
of total publications) (Figure 1C). The total number of studies
linked to mouse proteins is comparable to that of human, with
mouse proteins having slightly fewer (∼28%) publications.
We observe that a small number of proteins are broadly

studied across multiple fields, as reflected by the high multiplicity
of their occurrences in the top-50 list in the six systems (Figure
2A). Notable examples include cellular tumor antigen p53
(TP53), vascular endothelial growth factor A (VEGFA),
interleukin 6 (IL6), and tumor necrosis factor (TNF). We
further observe that functional classifications of the most
published proteins by Gene Ontology suggest that the primary
research interests in renal, intestinal, and pulmonary research all
revolve around carcinogenesis pathways or immune responses.
For instance, the top-ranked protein TP53 from the “liver or
hepatic” query is a major tumor suppressor functioning in DNA
repair and apoptosis heavily investigated in heptocarcinoma
research but also highly published in other systems. Promiscuity
of these proteins obscures other proteins that may be more
relevant to a particular topic despite their lower overall
publication counts.
To determine the specificity of a protein to a topic, we

normalized the system-specific publication counts of a protein by
its total publication counts. The resulting metric, termed here
normalized copublication distance and hitherto abbreviated as
NCD where applicable, is a measurement of the semantic
similarity (also known as semantic distance) of the topic versus
the protein, similar to other metrics such as normalized
compression distance and normalized Google similarity
distance,15 the latter of which is intended to compute the
relatedness in meanings between two terms as they appear in a
corpus of textual knowledge and whose formalism is based on
information theory and Kolmogorov complexity. The normal-
ization eliminates the multiplicity of protein occurrences in the
queried system (Figure 2B) and down-ranks proteins with high
publication count in the systems such as TP53, TNF, and
apolipoprotein E (APOE) in the cardiovascular system, but some
proteins remain highly ranked (e.g., VEGFA), likely because it
remains preferentially studied therein. The distributions of NCD
in each queried organ system approximate normality (Figure
2C). We estimate the significance of copublication by Z scores.
The NCD is nonlinearly related to publication counts (Figure
2D) and furthermore is not significantly correlated with the
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abundance or ease of detection of a protein in most queried
topics (Supporting Figure S1). For certain applications, NCD
may be harnessed in conjunction with publication counts to
present a complementary view of the subject andmay be adjusted
by the citation counts of articles (Supporting Figure S2). For
example, identifying highly published proteins may be useful for
assay development that intends to target the broadest audience
possible in multiple fields, whereas NCD may be used to
pinpoint topic-specific proteins.
Top-ranked proteins by NCD in each system are shown in

Figure 3 and in further detail in Supporting Table S1. We suggest
that these proteins represent targets of exceptional interest to
their respective disciplines of biomedical research. In the
cardiovascular system, the top protein is VEGFA in both
human and mouse, which also has the highest numbers of
publications. In the cerebral system, the top-ranked protein in
both human and mouse is brain-derived neurotrophic factor
(BDNF), a neurotrophin associated with neuron survival,
memory formation, and learning. In the hepatic system, the
top-rankedmouse protein is leptin (LEP), a hormone involved in
the regulation of hunger, energy metabolism, and obesity. In the
renal system, the top protein in both human and mouse is
polycystin-1 (PKD1), a developmental glycoprotein associated
with polycystic kidney diseases. In the pulmonary system, the top
human protein is epidermal growth factor receptor (EGFR), a
cell surface receptor tyrosine kinase that transduces to multiple
pathways including Akt and STAT, which is activated in multiple
types of lung cancers; the top rankedmouse protein is pulmonary
surfactant-associated protein C (SFTPC), which forms the
surfactant that lines the lung tissue. In the intestinal system, the

top-ranked human protein is homeobox CDX-2, a homeobox
protein that directs the formation of small and large intestines in
human and is a marker in colon cancer; the top-ranked mouse
protein is adenomatous polyposis coli protein (APC), a regulator
of Wnt signaling mutated in familial adenomatous polyposis and
other sporadic colorectal cancers. When comparing the rankings
of some human proteins to their mouse orthologs, we observe a
distinction in their rankings in mouse and human queries. We
observe that only moderate correlation exists between the NCD
of the top-50 human proteins and their mouse orthologs
(Spearman’s correlation coefficient ρ = 0.27 to 0.60), which we
attribute to disparate emphases between interests of basic
research in animal models and clinical applicability in human.
Network analysis of the cardiovascular protein list corroborates
the mechanistic emphasis of the mouse proteins that appears to
occupy regulatory hubs within protein networks.13 In contrast,
protein nodes highly studied in human are more peripheral in
network connectivity, likely due to their status as downstream
targets more closely linked to overt pathophysiological
phenotypes.
We next interrogated whether the current approach is

applicable to other queryable topics such as disease terms. If
the described method returns a valid list of essential proteins that
are pertinent to understanding a subject of inquiry, a more
specific query such as on a particular disorder should return a list
of proteins that are identifiably implicated in the pathogenic
mechanism of the disease based on prior knowledge. We queried
five prevalent multifactorial diseases that are not primarily caused
by mutations in single genes: Alzheimer’s disease, Parkinson’s
disease, myeloid leukemia, cardiac arrhythmia, and atheroscle-

Figure 3. High-impact proteins in six organ systems in (A) human and (B) mouse. The gene names and protein names of the top five proteins, as
determined by their normalized copublication distance within the queried organ system in the literature, are shown. The identities of the top proteins in
each system indicate both organ-system-specific as well as species-specific differences in the focus of biomedical research.
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rosis (Supporting Table S2). Two of the topics were neuro-
degenerative diseases in the cerebral system and two were
cardiovascular diseases, hence we could validate whether distinct
sets of disease-associated proteins may be acquired. Indeed,
searching for cardiac arrhythmia returned five cardiac ion
channels in the top five proteins, NaV1.5 (SCN5A), hERG
(KCNH2), KV7.1 (KCNQ1), delayed rectifier potassium
channel subunit IsK (KCNE1), and ryanodine receptor
(RYR2), whereas the atherosclerosis search term returned
serum paraoxonase (PON1), cholesteryl ester transfer protein
(CETP), C-reactive protein (CRP), oxidized low-density
lipoprotein receptor (OLR1), and ATP-binding cassette
subfamily A1 (ABCA1). In the brain, the five most relevant
proteins in Alzheimer’s disease were amyloid beta A4 protein
(APP), APOE, presenilin-1 (PSEN1), microtubule-associated
protein tau (MAPT), and beta-secretase 1 (BACE1), whereas the
top five proteins in Parkinson’s disease were alpha-synuclein
(SNCA/PARK1), leucin-rich repeat serine/threonine-protein
kinase 2 (LRRK2/PARK8), E3-ubiquitin ligase Parkin (PARK2),
mitochondrial serine/threonine protein kinase (PINK1), and
protein DJ-1 (PARK7). Manual reverse queries of these proteins
returned publications on each of their corresponding disease,
suggesting the method is able to correctly identify specific
proteins of significance from the literature. The result also
suggests a flexible way to acquire protein functional annotations

based on disease-specific or other topical keywords and may be
particularly useful in higher-level physiology keywords (e.g.,
arrhythmia) that are not typically encompassed in Gene
Ontology and other databases.
Validation of our results requires interrogating whether the

acquired list of popular proteins accurately portrays the
important proteins in each system. This is challenged by the
paucity of gold standards: We note from anecdotal experience
that the significance of a protein to a particular field typically
cannot be objectively quantified a priori even by individuals with
expert knowledge in the field and that the reason for the current
work is to introduce an objective metric to what is hitherto a
subjective endeavor. Nevertheless, we demonstrate that the top-
protein lists possess several expected properties. We compared
our list of popular disease proteins to Gene Prospector,16 which
uses a custom literature database including genome-wide
association studies (GWAS) and meta-analyses to identify
genetic loci implicated in complex diseases. We compared our
results for Alzheimer’s disease and cardiac arrhythmia and found
significant correlation in disease gene implications (ρ: 0.22, P: 6.4
× 10−9 for Alzheimer’s disease; ρ: 0.43, P: 6.4 × 10−11 for cardiac
arrhythmia; ρ: correlation coefficient, P: significance of
correlation), suggesting the method here identifies proteins
that are functionally implicated in disease by orthogonal means.
We further matched the results against a gold standard positive of

Figure 4. Popular protein networks. (A) Pairwise normalized copublication distance matrices of top proteins in the cardiovascular and the cerebral
system are shown. Cells in the heat map represent the normalized copublication distance between each protein−protein pair via their copublication
history (red: greater number of copublications). Proteins may be clustered into identifiable pathways that are known to play significant roles in the
physiology of each system, as shown on the left, suggesting the described method of using literature records to identify essential protein readily
recapitulates known biology (PB−H: Benjamini−Hochberg adjusted P value of enrichment). (B) Proximal proteins of ten of the top proteins in the
cardiovascular system are visualized in protein−protein interaction network graphs. The color of each node denotes the normalized copublication
distance of a protein to cardiovascular research, where darker colors denote a protein is more preferentially found in cardiovascular publications
compared with other fields. The size of nodes denotes publication counts in cardiovascular-relevant publications; size increases with increasing
publication count. Selected hub genes and highly published cardiovascular proteins are labeled in black; in addition, proteins in the network with fewer
than 10 publications are labeled in blue and represent proteins that are associated with popular proteins via protein−protein interactions but are
themselves yet to be heavily investigated.
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manually curated gene list in the PDGene database,17,21 a
Parkinson’s disease gene database that ranks proteins by meta-
analysis significance of multiple genetic association studies on
Europeans. Although PDGene does not capture proteins
implicated in familial or experimental models of Parkinson’s
diseases (e.g., PINK1/Parkin/PARK7), our method here
nevertheless identifies 10 out of 21 of the top proteins in
PDGene, plus others that are omitted in the database
(correlation between our result (NCD) and the PDGene results
(log P): ρ: 0.68, P: 0.035). Taken together, these analyses
demonstrate the top NCD list likely captures proteins of bona
fide biological significance within specific topics.
Furthermore, we demonstrate that the top proteins are highly

and significantly enriched with the expected Gene Ontology
annotations, which corroborates their likely bona fide
importance to the queried topics. We include only proteins
with at least 10 publications in the same topic as background for
comparison to avoid biases in annotation completeness (mean
GO terms per protein = 13.6 vs 18.4). Functional annotations
suggest that the primary cardiovascular research interests
intersect with biological processes including cardiac muscle
contraction (GO:0060048, 14.0× enriched, PB−H < 3.0 × 10−11),
angiogenesis (GO:0001525, 9.2× enriched, PB−H < 9.2 × 10−9),
and heart development (GO: 0007507, 4.7× enriched, PB−H <
2.1 × 10−6). Functional annotations of the top cerebral proteins
intersected with biological processes including ionotropic
glutamate receptor signaling pathway (GO:0035235; 24.0×
enriched, PB−H < 9.6 × 10−9), synaptic transmission
(GO:0007268, 4.8× enriched, PB−H < 1.1 × 10−6), and learning
(GO:0007612, 9.7× enriched, PB−H < 2.1 × 10−5). Top hepatic
proteins intersected with biological processes including small-
molecule metabolic process (GO:0044281; 6.4× enriched, PB−H
< 1.1 × 10−21), bile acid and bile salt transport (GO:0015271,
10.6× enriched, PB−H < 2.0 × 10−5), and xenobiotic metabolic
process (GO:0006805, 4.3× enriched, PB−H < 3.3 × 10−5). Top
renal proteins intersected with biological processes including
transmembrane transport (GO:0055085, 6.2× enriched, PB−H <
1.1 × 10−16), excretion (GO:0007588, 7.7× enriched, PB−H < 3.3
× 10−6), and kidney development (GO:0001822, 3.7× enriched,
PB−H < 4.9 × 10−4). Top intestinal proteins intersected with
biological processes including transmembrane transport
(GO:0055085, 5.1× enriched, PB−H 1.4 × 10−4), digestion
(GO:0007586, 4.4× enriched, PB−H < 5.2 × 10−2), and G-
protein-coupled receptor signaling pathway (GO:0007186, 2.9×
enriched, PB−H < 6.3 × 10−2). Top pulmonary proteins
intersected with biological processes including respiratory
gaseous exchange (GO:0007585, 62.0× enriched, PB−H < 1.5 ×
10−5), and alveolar lamellar body (GO:0004984, inf. enriched,
PB−H < 2.8 × 10−2). The observed tissues specificity was
preserved when top proteins from each queried topic were
compared with those of all six systems, suggesting the literature-
derived list corroborated with annotation databases in identifying
proteins involved in important pathways.
Next, we extended the method to consider the pairwise NCD

(NCD*P1,P2,T) between two proteins within a particular topic
(e.g., angiotensinogen (AGT) vs angiotensin converting enzyme
(ACE) in the cardiovascular system). Two proteins are
considered to have a finite pairwise NCD* from each other if
they are referenced to at least one identical PubMed publication
within a particular query. Proteins that are closely related (e.g.,
belonging to the same supramolecular complex) should
therefore be expected to have a low NCD*. Hierarchical
clustering of the protein−protein NCD* matrix in the cerebral

and cardiovascular systems corroborated that shared publication
readily recapitulates known functional clusters and biological
pathways (Figure 4A).
Finally, we note that the method presented here may be used

to identify not only proteins that are popular but also proteins
that have potential biological significance but currently are not
associated with high numbers of publications. As it has been
remarked that biomedical research is disproportionately focused
on a few proteins for which high-quality reagents are available,18

the present method may be used to reorient research efforts
toward currently neglected proteins. We note that such proteins
may function in similar biological contexts as the popular
proteins or associate with them via protein−protein interactions.
To understand the biological contexts of the popular proteins, we
analyzed top proteins using their membership within known
protein−protein interaction networks from Reactome.19,20,22,23

Major functional clusters surrounding the focal points of research
are visualized in networks (Figure 4B) using several popular
cardiovascular proteins as examples. A number of connected
functional clusters in the cardiac proteome can be discerned,
including contractile proteins (proximal to TNNI3 and
TNNT2), VEGF signaling (proximal to VEGFA, FLT1, KDR,
and HIF1A), nitric oxide/PKA signaling (proximal to NOS3),
and ion channels (proximal to KCNQ1, KCNH2, SCN5A).
Remarkably, although the proximal proteins are functionally
related to the popular proteins, suggesting they are involved in
biological processes that are considered of interest to
cardiovascular research, many are associated with relatively few
dedicated publications. For example, tropomyosin 4 alpha chain
(TPM4) is functionally associated with cardiac troponins
(TNNT2 and TNNI3) and is highly expressed in the heart but
has only five referenced cardiovascular publications on
Gene2PubMed at the time of analysis. Therefore, the presented
method, in conjunction with network analysis and tissue
expression profile data, may also be used to identify under-
investigated proteins that may be network neighbors to essential
proteins and predict protein targets that may in time become
popular in or significant to research within a particular field.

■ DISCUSSION
Quantitative proteomics assays, such as MRM assays, have the
advantage that they can be developed for any number of protein
sequences encoded by the genome and are not dependent on
antibody availability unless enrichment is required and then only
a single antibody is required. Their effective dissemination for
clinical and hypothesis-testing applications is becoming a
pressing objective that promises a transformative impact on
biomedical research, both within individual laboratories and
across the research community as a whole. The objective of
prioritizing technology development bares resemblance to the
candidate disease gene prioritization problem (e.g., within
specific loci in genetic linkage studies), which has invited
successful bioinformatics methods that analyze sequences
features or bibliometrics to prioritize relatively small gene lists.
Here we suggest that popular and important proteins in a broad
query topic may be similarly identified from PubMed queries and
protein-reference coenrichment. The general approach and
protein lists presented here may be used to guide rational
experimental design in optimizingMRM transitions for any given
topic for which there have been literature publications.
Our analysis suggests that biomedical investigations are highly

specific to individual fields of inquiry with respect to the proteins
studied. The priority of protein assay development in, for
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instance, cardiovascular research applications differs from that for
pulmonary applications. Prioritized development of quantitative
assays for tissue-specific proteins should therefore be explored to
facilitate broader applications and expedited protein character-
izations. Identifying the important protein in each field may also
help focus resources and manpower toward improving
annotations on the proteins for which a large body of information
is available and toward which community interest is gravitated.
Moreover, the publication records of proteins may be overlaid on
existing interaction networks to identify potential gaps in
scientific knowledge. In addition to developing quantitative
assays for popular proteins, we note that many proteins currently
not intensely studied are nevertheless likely to have important
biological functions. In the long run, therefore, proteomics assays
ought also to be tailored for under-studied proteins and
pathways, which will have the potential to greatly propel the
pace of research in particular areas. Hence the current method
may be reoriented to support rational method development for
currently under-studied protein, which, for example, may be
functionally associated (e.g., interaction neighbors) with the top
proteins but are themselves associated with only few published
articles. Both the popular proteins and their corresponding
networks therefore constitute attractive targets that may be
prioritized by the proteomics community for the development
and optimization of high-impact quantitative assays.
A limitation of the presented approach is the difficulty to

distinguish less intensively investigated pathways that may
nevertheless be important to disease pathogenesis. Another
potential limitation is its dependence on the completeness and
accuracy of biocuration effort of Gene2PubMed. The coenrich-
ment of terms or ontologies to deduce functional relationship is a
well-established method in data-mining,11,21 and several previous
works have examined the use of literature records including Gene
Ontology, Gene2PubMed and others to compare gene sets or
infer gene set functions.22 The Gene2MeSH service by NCIBI
(http://gene2mesh.ncibi.org), for example, allows identification
of genes associated with medical subject headings (MeSH) using
contingency table based statistics to inform on gene enrichment
across MeSH terms. The approach described here differs from
these prior efforts in that it is not restricted to particular
vocabularies (e.g., MeSH) or concepts (disease terms). As with
these other existing efforts, however, the approach described here
would be biased against particular topics or time periods for
which manual curation (in our case, that of Gene2PubMed) is
relatively less complete. We also do not currently distinguish
investigations at the protein level from those in their cognate
genes or transcripts; however, we note that many publications
may have been limited to transcript-level measurements in part
because of the general unavailability of protein research
reagents,18 which is, in fact, the very challenge the HUPO B/
D-HPP initiatives aim to address. Nevertheless, future works may
benefit from additional data sources that distinguish the disease
relevance of transcripts, proteins, splice isoforms, and post-
translational modifications (e.g., to include only publications that
concern a particular modification site). Such distinctions may be
achieved via the use of automated text-mining of keywords and
abstracts, which have already been demonstrated to complement
the coverage of existing Gene2PubMed curation.22−24

In summary, we describe a data science approach to rationally
target proteomics assay development in various biomedical
disciplines by identifying proteins that show close semantic
relationship to a queried topic in the literature record. The
method is scalable between queries of a few retrievable

publications (e.g., searching for a particular disease in a particular
journal) to those of entire organ system. Our analysis identifies
highly investigated proteins in six major human and mouse organ
systems (cardiovascular, cerebral, hepatic, renal, pulmonary, and
intestinal). Although the biomedical significance of priority
proteins may only be validated after careful investigations in
various models and cohorts, the current study should provide a
ready-made list of high-impact proteins for which proteomics
assays will be of broad interest.
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