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Abstract

The use of crowdsourcing to solve important but complex problems in biomedical and clinical sciences is growing and
encompasses a wide variety of approaches. The crowd is diverse and includes online marketplace workers, health informa-
tion seekers, science enthusiasts and domain experts. In this article, we review and highlight recent studies that use crowd-
sourcing to advance biomedicine. We classify these studies into two broad categories: (i) mining big data generated from a
crowd (e.g. search logs) and (ii) active crowdsourcing via specific technical platforms, e.g. labor markets, wikis, scientific
games and community challenges. Through describing each study in detail, we demonstrate the applicability of different
methods in a variety of domains in biomedical research, including genomics, biocuration and clinical research.
Furthermore, we discuss and highlight the strengths and limitations of different crowdsourcing platforms. Finally, we iden-
tify important emerging trends, opportunities and remaining challenges for future crowdsourcing research in biomedicine.
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Introduction

Crowdsourcing is the process of getting services, information,
labor or ideas by outsourcing through an open call, especially
through the Internet [1]. The ‘crowd’ of people recruited is usu-
ally large, poorly defined and diverse. The tasks that can be
crowdsourced include scientific problems that remain out of
the reach of current computational algorithms, and thus require
manual judgments or human expertise. Crowdsourcing
approaches in biomedicine include a variety of bioinformatics
research activities that are of great interest and are active re-
search topics, e.g. text mining the search engine logs of millions
of users [2, 3], seeking crowd knowledge and judgments to scale
curation of biomedical databases [4, 5], designing clinical trial
applications [6], solving complex problems in structural biology

[7], etc. Further, the ‘crowd’ is expanding to explicitly include
scientists and physicians (i.e. expert sourcing), and patients
[8, 9]. In a previous review [10], crowdsourcing problems were
broadly classified as either ‘microtasks’ or ‘megatasks’.
Microtasks are individually small tasks that typically come in
big numbers where a large number of people contribute in par-
allel to save time and generate an aggregated solution, e.g. word
sense disambiguation [11], and named entity recognition (NER)
[12], which involves locating and classifying mentions in text
into predefined categories, such as disease, drugs, genes [13,
14], etc. Megatasks are high difficulty tasks that are often ap-
proached through open innovation contests [15] where the key
challenge is to find a few talented individuals from a large pool,
e.g. challenging games such as Foldit [16].

Ritu Khare is an Information Scientist at the Department of Biomedical and Health Informatics of the Children’s Hospital of Philadelphia. Her research
focuses on electronic health record data mining and data quality.
Benjamin M. Good is an Assistant Professor of the Department of Molecular and Experimental Medicine at The Scripps Research Institute. His research
focuses on applications of crowdsourcing in bioinformatics.
Robert Leman is a Research Fellow at the National Center for Biotechnology Information, National Institutes of Health. His research focuses on informa-
tion extraction and natural language processing.
Andrew I. Su is Associate Professor of the Department of Molecular and Experimental Medicine at The Scripps Research Institute, where he leads the Su
Lab focused on crowdsourcing biology.
Zhiyong Lu is Earl Stadtman investigator at the National Center for Biotechnology Information (NCBI), National Institutes of Health, where he leads the
biomedical text-mining group. Dr. Lu’s research has been successfully applied to the NCBI’s PubMed system and beyond.

Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.

23

Briefings in Bioinformatics, 17(1), 2016, 23–32

doi: 10.1093/bib/bbv021
Advance Access Publication Date: 17 April 2015
Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/17/1/23/2240184 by R

alph R
eisfeld user on 03 M

ay 2024

,
,
http://www.oxfordjournals.org/


The use of crowdsourcing in biomedicine is growing rapidly.
Since the publication of the last review, there have been several
new and highly focused workshops in this area [17]. In recent
years, over 200 related publications have been added to the
PubMed database. In this article, we present a review of the
major recent advances in the field of crowdsourcing in biomedi-
cine, including both new studies as well as updates of the work
previously discussed in [10]. This review is organized around
the classes of crowdsourcing problems. In addition to ‘active
crowdsourcing’, which subsumes megatasking and microtask-
ing, we introduce a new class ‘mining crowd data’, which in-
volves biomedical knowledge discovery from the big data
accumulated in public forums. We further categorize the works
in each class based on the platforms used to conduct the crowd-
sourcing studies. The central part of Figure 1 presents a visual
overview of the overall organization of this review. The discus-
sion and conclusions section presents the opportunities and
challenges associated with various crowdsourcing platforms,
and highlights some emerging trends for future crowdsourcing
research in biomedicine.

Mining crowd data

Crowd data mining refers to the research activities of collecting
and analyzing the data, produced by people through participa-
tion in public forums, for the knowledge discovery process.
While in many cases, the crowd data are privately owned by the

hosting organization, more sources (e.g. Twitter API, openFDA)
are making their data freely available for computation, investi-
gation and exploration. In the era of social media and big data,
many recent studies address important health problems, such
as identification of adverse effects of drugs and seasonality of
diseases, via search logs [18, 19], Twitter [20], online patient
forums [21], Food and Drug Administration (FDA) reports [22, 23]
and electronic health records (EHRs) [24].

Web search logs

Health care consumers are increasingly resorting to resources
such as Web search engines [2] and public forums to seek health
information or discuss health concerns such as adverse drug
events. The traditional routes for reporting adverse effects of
drugs on patients are slow and do not comprehensively capture
all cases. Previous research has primarily focused on early de-
tection of drug safety information from scholarly publications
[25]. Recently, crowdsourcing has been explored to detect these
events from wider data sources. White et al. [18] studied
whether Web search patterns may give early clues to adverse
effects of drug–drug interactions. This study focused on a par-
ticular case—‘paroxetine and pravastatin interaction causes
hyperglycemia’—reported to the FDA in 2011. White and col-
leagues analyzed 82 million drug/disease queries from 6 million
Web searchers (based on IP addresses) in 2010. These searchers
opted to share their activities through a Microsoft browser

Figure 1. Crowdsourcing in Biomedicine: The Big Picture.
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add-on application. Using disproportionality analysis, it was
confirmed that the users who searched for both drugs were
more likely to search for hyperglycemia-related terms than
those who searched for only one of the drugs. The generalizabil-
ity of this method in making predictions was also confirmed for
several other established drug–drug interactions.

Ingram et al. [26] used Google Trends (http://www.google.
com/trends/), an online tool that gives statistics on search term
usage in Google, to study the seasonal phenomena in sleep-
disordered breathing using different variations of the search
terms such as ‘snoring’, ‘sleep apnea’, ‘snoring children’, ‘sleep
apnea children’. The queries from a 7-year time frame (January
2006–December 2012) were collected from two representative
countries in the northern and southern hemisphere, USA and
Australia, respectively. Using cosinor analysis (a regression-
based peak finding technique), peak searches for all the
queries were observed in the winter/early spring season in
both countries, i.e. January to March for the USA, and July
for Australia. The potential of using Google Trends was fur
ther empirically validated in another study [27] that
compared multiple logistic regression models to forecast influ
enza-like-illness-related visits in an emergency department. It
was found that the models performed significantly better when
the Google Flu Trends data were included as a predictive
variable.

Smartphone applications and social media

According to Google, the number of worldwide smart phone
users was 1.75 billion in 2014, and is expected to increase to 2
billion in 2015 [28]. People are increasingly using smartphone
applications to track personal health and behaviors. In addition,
the patients in this era are more willing to share health infor-
mation for research purposes [29]. As an example,
PatientsLikeMe (http://www.patientslikeme.com/), a patient-
powered research network, has >220 000 members who share
their personal health information on more than 2000 conditions
[30]. These new habits are leading to a massive amount of new
data (‘big data’) and an excellent potential knowledge resource.

In a recent study, Odgers et al. [19] studied the drug/disease
query logs of patient care providers in UpToDate, a point of care
medical resource. The authors investigated the hypothesis that
when a provider is concerned about an adverse drug reaction,
she searches for both the associated drug and disease/event
concepts within a short span of time. Over 320 million queries
were mined from the 2011 to 2012 search logs, and association
analysis was used to quantify the strength of drug/event
association. The evaluation was conducted on two data
sets, one where the adverse drug reactions were long
established (i.e. retrospective analysis) and another one
where the event was reported after the timeline of the query
logs (i.e. prospective analysis). The proposed method for
distinguishing valid from spurious associations achieved a
discrimination accuracy of 85 and 68% on the retrospective and
prospective data sets, respectively, on an optimal surveillance
period of 4–10 min. Also, >80% of the associations in the
prospective data set were supported in the query logs within a
surveillance period of 5 min. This study strongly indicates the
feasibility and utility of mining crowd data for pharmacovigi-
lance purposes.

In another study, Freifeld et al. [20] studied the signals of
consumer-reported events from Twitter posts (November
2012–May 2013). A total of 4401 posts (related to 23 medical
products) were selected using a combination of dictionary

matching, human annotation, and natural language processing
(NLP) techniques, and were found to be concordant with reports
from the FDA Adverse Event Reporting System. Furthermore,
Yang et al. [23] investigated the methods to compute the
‘interestingness’ of an adverse event signal mined from online
communities such as MedHelp. They concluded that the met-
rics ‘lift’ and ‘proportional reporting ratios’ in association rule
mining are highly predictive of the drug–reaction signal
strength in social communities.

Turner-McGrievy et al. [31] mined data from the Eatery appli-
cation, which allows users to post photographs of their meals,
and receive ratings from peers on the healthiness scores of
those meals (on a scale of ‘fat’ to ‘fit’). The authors mined 450
pictures rated by 5006 raters to study how closely the crowd-
sourced ratings of foods and beverages were related to the rat-
ings by three trained raters who were knowledgeable of the
Dietary Guidelines for Americans. The correlation coefficients
of healthiness scores between each expert rater and peer raters
were highly significant, and the peer ratings were in the ex-
pected direction as per the dietary guidelines recommenda-
tions. These results indicate the potential of using
crowdsourcing to provide effective and expert-like feedback on
diet quality of users.

Active crowdsourcing

In contrast to mining crowd data, active crowdsourcing invites
people to participate in solving a problem in biomedicine.
Active crowdsourcing is conducted through a variety of plat-
forms such as labor markets, casual games, hard games or com-
munity challenges.

Labor markets (Amazon Mechanical Turk, etc.)

A labor market platform provides the technical environment to
design and submit the crowdsourcing microtasks, and more im-
portantly, acts as the human labor market so that appropri-
ate 2workers could be recruited for the submitted tasks. Some
of the most popular platforms include Amazon Mechanical
Turk (MTurk) (https://www.mturk.com/mturk/welcome) and
Crowdflower (http://www.crowdflower.com/). Investigators can
design and customize the task interface for their experiments,
using open-ended or multiple-choice questions, instructions for
workers and other features such as word highlighting (e.g.
Crowdflower allows building sophisticated crowdsourcing user
interfaces using HTML and JavaScript). These platforms also
allow configuration of the quality control mechanisms, e.g. a
qualifier test to recruit high-performing workers, and interject
ing control microtasks or training examples to evaluate the per
formance of workers. Through these platforms, one could spe
cify the inclusion criteria for workers (e.g. demographics), pay
ment for each microtask (usually a few cents) and the redun
dancy of judgments, i.e. the number of unique workers who
must work on a microtask (several studies request five
judgments per microtask). Once the job is finished, the study in
vestigators aggregate the crowdsourced judgments (if applic
able) using consensus building methods such as majority vot
ing, and evaluate the consensus judgments, e.g. accuracy could
be evaluated using expert curated gold standard, manual review
or qualitative analysis.

In recent years, several successful studies in biomedicine
have been conducted through the labor market platforms for a
variety of application domains, including NLP, biocuration and
literature review.
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Biomedical and clinical NLP

Biomedical NLP or text mining refers to the development of
computer algorithms and tools to analyze and make sense of
natural language data in the biological and medical domains
(e.g. scholarly publications [32–35], EHRs [36, 37]).

In the crowdsourced NLP domain, most of the recent studies
are focused on performing NER of drug or disease entities owing
to their critical roles in biomedical research [2, 38]. Zhai et al.
[39] used crowdsourcing for medication NER and entity linkage
in eligibility criteria section of clinical trial announcement docu-
ments. The medication NER interface was developed to enable
word pre-highlighting, word selection, annotation selection
(name or type), tabular display of annotations (feedback) and se-
lection of entities with discontinuous tokens. The authors also
designed a correction task to edit annotations from the previous
task, and a third task to link medications with attributes using
pre-annotations through double annotations by experts. The
authors posted 3400 microtasks drawn from 1042 clinical trial
announcements on Crowdflower, and applied several quality
control measures and aggregation strategies. Within 10 days of
job posting, 156, 86 and 46 workers were recruited for the NER,
NER correction and linking tasks, respectively. The final
F-measures for medication NER and medication type NER were
90 and 76%, respectively, considered very close to the perform-
ance of the state-of-the-art text-mining tools [40–42]. This study
also resulted into a very high accuracy (96%) on the linking task.
In addition, no statistically significant difference was observed
between the crowd-generated and expert-generated corpora,
thus indicating the potential of using the crowd workers for NLP
gold standard development.

MacLean and Heer [43] studied the problem of identifying
medically relevant terms from patient posts in public health
forums, MedHelp and CureTogether. They conducted two sets
of studies, one with 30 nurse professionals recruited from
oDesk (https://www.odesk.com/), a freelancing labor market, to
collect three-way annotations on 1000 patient-authored sen
tences, and another with 50 crowd workers recruited from
MTurk to collect five-way annotations on 10 000 sentences. The
study was finished in 2 weeks with experts and within 17 hours
of job posting with crowd workers. The crowd achieved an accur
acy of 84% with expert annotations as the gold standard. It was
found that the crowd-labeled data set is comparable with the ex
pert-labeled data set in its ability to train a probabilistic model
for labeling sequential tokens in a text [44].

In another study, Good et al. [45] studied the ability of crowd
workers on MTurk to annotate disease mentions in PubMed ab-
stracts. They used the expert-curated NCBI disease corpus [46,
47] as the gold standard for comparison and adapted the ori-
ginal annotation guidelines to suit the crowdsourcing environ-
ment. In addition to several quality control checks, users were
also given precise feedback on their performance on control
items with respect to the annotation guidelines. Overall, 145
workers contributed to produce annotations for 593 documents
within 9 days of job posting. Each document was annotated by a
minimum of 15 workers. Using voting to aggregate responses,
the workers achieved an F1-measure of 87% in comparison with
the gold standard.

Biocuration

Biocuration refers to the process of extracting and curating key
biological information, primarily from the literature but also
other sources, into structured databases that can be examined
systematically and computationally. Given the high costs of

manual curation, many recent studies have proposed hybrid
approaches combining text mining and crowdsourcing in curat-
ing drug indications, gene–disease associations and biomedical
ontologies [48–51].

Khare et al. [4] translated the task of cataloging indications
from narrative drug package inserts [52] into microtasks suit-
able for the average crowd worker, where the worker is asked to
judge whether a highlighted disease is an indication of the
given drug. The investigators posted >3000 microtasks (or drug/
disease relationships) drawn from 706 drug labels on MTurk
and collected 18 775 judgments from 74 workers, and achieved
an aggregated accuracy of 96% on the control items.

In another study, Burger et al. [5, 53] used crowdsourcing to
identify computable gene–mutation relationships from PubMed.
Their microtask data set generation involved using GenNorm
[54] and EMU [55] tools for identifying gene and mutation men-
tions respectively, and then using the crowd workers at MTurk
to validate correct relationships. They simplified the task design
by displaying only one gene–mutation pair at a time so that the
crowd was asked to make a single yes/no judgment in a given
task. Using quality control mechanisms, they posted 1354
microtasks drawn from 275 abstracts and collected five-way an-
notations contributed by 24 workers within 11 days. The judg-
ment aggregation, performed using a Naı̈ve Bayes classifier,
resulted in 85% accuracy, and the active management of simu-
lations resulted into as estimated mention-level accuracy of
90%.

Mortensen et al. [56] created microtasks on Crowdflower to
curate a clinical ontology, the Systemized Nomenclature of
Medicine-Clinical Terms (SNOMED-CT). The crowdsourcing
interface was designed to show the hierarchical relationship be-
tween two SNOMED-CT concepts, and seek the user’s judgment
on the validity of the relationship. The crowdsourcing interface
also showed the definitions of the two concepts, pulled from
controlled vocabularies such as MeSH (Medical Subject
Headings) or the National Cancer Institute Thesaurus. The
crowdsourcing job consisted of 200 relationships from
SNOMED-CT, where 25 separate workers evaluated each rela-
tionship. The judgments were aggregated using a Bayesian
method and evaluated using a gold standard prepared by five
domain experts. The average agreement of the crowd workers
with the experts was approximately same as the average inter-
rater agreement of the experts (0.58), indicating that the crowd
is nearly indistinguishable from the experts in its ability to
evaluate ontology. This study helped in identifying critical
errors in 20% of the posted relationships, which were subse-
quently communicated to the concerning organization.

The abovementioned studies suggest that crowdsourcing in
biocuration not only results in significant cost and time savings,
but also leads to an accuracy comparable with that of domain
experts.

Literature review

The labor market platforms are also being used to conduct sys-
tematic literature reviews of specific research questions. Brown
and Allison [57] resorted to crowdsourcing to study whether the
scientific articles on nutrition obesity that are concordant with
popular opinion receive more attention among peers. To study
this question, they designed a pipeline of crowdsourcing tasks
including, (i) preparing the corpus of relevant scientific ab-
stracts that investigated nutrition and obesity in humans and
had an unambiguous conclusion, (ii) extracting the food topic of
the abstracts, (iii) providing the perceived ability of foods to
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produce obesity and (iv) extracting the Google scholar citations
count for the articles. As a starting point, 689 PubMed abstracts
(within a 4-year range) were selected and posted to the crowd-
sourcing pipeline on MTurk. The crowd workers, with some ex-
pert intervention, helped prepare a corpus of 158 abstracts,
extracting the corresponding foods, and more importantly pro-
viding the perceived ability of those foods in causing obesity.
The workers achieved a consensus for 96% of the conclusions
and 84% of the foods in the abstracts, and 99% of the workers
provided complete and usable information on the perceived
ability and their opinions qualitatively matched with the au-
thors’ expectations. By synthesizing all the results, it was found
that there is no significant difference between intuitive and
counterintuitive conclusions on nutrition obesity in the atten-
tion received by the scientific community.

Collaborative editing using wiki-style tools

Labor markets continue to be the most popular method for
crowdsourcing where the money is the predominant incentive
for participation. Recently, researchers have also conducted
successful studies using nonconventional crowdsourcing plat-
forms such as Google drive and Web-based forms, inviting users
to prepare educational material [9] and even contribute to re-
search study design [30].

The integration of Wikipedia with biocuration has been pro-
posed and much discussed in recent publications [58]. Loguercio
et al. [59] developed a wiki-based online game, Dizeez, where
the presumably knowledgeable players are invited to catalog
valid gene–disease associations by answering multiple-choice
questions. Each question is composed of one clue gene and five
choices for diseases sampled from Gene Wiki [60], including one
corrected link extracted from the Gene Wiki (gold standard).
Within 9 months of Dizeez’s release, 230 individuals played
1045 games generating 6941 unique gene–disease associations.
The validity of the identified associations (measured against
the gold standard) was found to be concordant with the number
of votes (i.e. number of players) for that assertion. Nearly 30% of
the identified associations were not present in any of the major
gene–disease databases (OMIM, PharmGKB or Gene Wiki). Out
of the novel associations, only six assertions were supported by
four or more votes, including five assertions where the evidence
could be found in recent literature and one assertion that ap-
peared plausible but was not yet supported in any conclusive
research.

Motivated by the traditional practice of classmates quizzing
each other and using flashcards for exam preparation, Bow
et al. [9] developed a crowdsourcing model to develop the exam
preparation content for preclinical school curriculum. The in-
vestigators prepared a centralized Google drive repository
where students could be invited to anonymously contribute and
edit quiz questions and notes relevant to a given lecture. In add-
ition, the investigators developed a Java-based program to auto-
matically generate a digital flashcard from those questions. The
class of 2014 Johns Hopkins University School of Medicine was
invited to contribute questions for 13 months; as a result, 120
students created 16 150 questions (average 36 questions per lec-
ture). As an outcome measure, it was found that the average
exam scores of this batch were higher than those of previous
batch where this model was not implemented and hence the
flash card system was not available. In a student survey (23% re-
sponse rate), more than half of the students referred to the flash
card program right before the final examination, and >90% of
the users found the flashcard system helpful in learning and

retaining new material.Another unique example of collabora-
tive editing in the clinical sciences domain is a company, called
Transparency Life Sciences, that conducts clinical trials for off-
label drug indications [30]. Motivated by the barriers to partici-
pation in clinical trials, this company develops its drug proto-
cols using a crowdsourcing model. For the development of its
drug application for the use of metformin in prostate cancer, 60
physicians from various specialties, and 42 patients and advo-
cates, were invited to comment on the clinical trial design pro-
cess through a secure Web form in a 6-week time frame [6].
Upon qualitative analysis (summarization and categorization)
of various responses, four major and five minor changes were
made to the original protocol.

Scientific games

People are estimated to spend >3 billion hours per week playing
computer games [61]. Since the original ideas of ‘games with a
purpose’ [62], game mechanics have been used to incentivize
crowd labor both in and out of the sciences. Games are an ap-
pealing form of crowdsourcing for several reasons. They do not
have the inherent limits on capacity that are inherent to micro-
task frameworks with per-work-unit costs [63]. Done well, they
tap into a variety of intrinsic incentives that can be more re-
warding to players than small financial sums. Aside from ac-
complishing crowdsourcing tasks, games have been shown to
be effective learning environments [64] and vehicles for raising
awareness and interest in science [65]. Despite these powerful
advantages, we see far fewer serious attempts at purposeful
games because they are substantially harder and more expen-
sive to make.

Genomics crowdsourcing is dominated by game-based pro-
jects. Phylo [66] and Ribo [61] are two multiple sequence align-
ment games for DNA and RNA structures, respectively. In both
these games, players attempt to line up colored bricks that rep-
resent nucleotides in different sequences by sliding them back
and forth along a horizontal grid. Phylo players have assisted in
improving >70% of the original alignments. Ribo presents extra
bricks that represent the secondary structures (base-pairing
properties) of sequence elements and a different scoring
function appropriate for RNA structural alignments. In a proof-
of-concept experiment, 15 players solved 115 puzzles corres-
ponding to a range of RNA alignment tasks. For the majority of
cases tested, the Ribo players were able to outperform computa-
tionally generated alignments. While this was a relatively small
study, the results are suggestive that this game can successfully
apply human computation to this computationally challenging
task.

The protein folding game ‘Foldit’ is the flagship of both ser-
ious games and citizen science in biology [7]. With >500 000
registered players, FoldIt is turning into a stable and important
resource for the structural biology community. Solutions found
by players often improve on those by state-of-the art protein
folding algorithms [67]. One of the important descendants of
Foldit is the game EteRNA [68], which is focused on the chal-
lenge of RNA structure design. Given a specific shape, the task
of the EteRNA players is to identify the RNA sequence that
would fold into this shape. In a unique twist, this game is dir-
ectly coupled to real laboratory experiments. Every month, the
best scoring sequences submitted by players are synthesized
and their structures are determined. These experiments provide
additional incentive to the players in terms of both the point
structure of the game (the closer the sequence actually folds
into the target structure the more points they get) and in that
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their gameplay actually has a tangible impact on the real world.
Furthermore, these experiments provide the players with a
clear signal from which they can learn. According to its creators,
EteRNA is an example of a ‘massive open laboratory’ [69].
The players effectively use the game to submit hypotheses that
are then tested in the laboratory. Once the results are returned,
the players can refine their hypotheses and repeat the cycle.
The availability of such Web-accessible laboratories means that
people outside of laboratory environments may now apply the
traditional scientific method. The incentive structures of the
game attract a diverse and engaged group of participants, but
the direct connection to the laboratory is likely the most import-
ant innovation, one that is likely to be emulated in various ways
in the near future. The Riedel-Kruse laboratory, for example,
has focused on creating increasingly sophisticated ‘biotic
games’, recently enabling players to directly engage with la-
boratory technology (e.g. microscopes) in real time [70, 71].

Community challenges in bioinformatics

In parallel to the development of crowdsourcing initiatives that
reach out to the general public to help advance science, large
open challenges are now commonly used to organize the efforts
of the scientific community itself. Pioneered by the Critical
Assessment of protein Structure Prediction (CASP) competitions
of the protein folding community (which have been running
since 1994) [72], this methodology has now been applied to NLP of
biomedical text [73–78], inference of gene regulatory networks
[79], prediction of breast cancer prognosis [80] and others (e.g.
http://dreamchallenges.org). These ‘shared tasks’ follow a fairly
consistent recipe: a computational prediction task is posted to
the community with a mechanism for submitting solutions, then
at a certain point in time, the challenge is closed and the algo
rithms are evaluated for their performance on previously unseen,
experimentally generated or expert-generated gold-standard
data, and finally the results are shared with the community.
Often multiple solutions submitted independently are combined
to produce meta-predictors that, in some cases, outperform the
best individual predictors [13, 79]. Recently, the structural biology
community sought to tap into this ‘wisdom of crowds’ phenom
enon by explicitly promoting the formation of new multi-institu
tional teams at the outset of a challenge called ‘WeFold’ [81]. A
complete processing pipeline for protein structure prediction can
include a variety of components. These might include for ex
ample: secondary structure prediction, homology modeling, pre
diction of contacts and generation and selection from a large var
iety of candidate solutions. In previous CASP competitions, partici
pants had to generate complete pipelines to submit predictions.
In WeFold, teams were encouraged to create folding pipelines
that integrated the best subcomponents from different labo
ratories. The hope was to identify novel tool-chains that could
outdo individual solutions. The results of the initiative were
mixed. In some cases, improvements were observed, but they
were not uniform. The organizers cite challenges in assembling
the required cyber-infrastructure and in recruiting teams to par
ticipate. However, they remain optimistic about the approach
and are actively working on the next iteration of this ‘coopetition’
framework.

Discussion and conclusions

While crowdsourcing existed long before the Internet, the cur-
rent face of crowdsourcing is much different—even more so in
biomedicine, where the crowd includes experienced physicians,

informed patients, science enthusiasts and technology enthusi-
asts looking for a secondary source of income through systems
like MTurk [82]. In this survey, we reviewed recent advances in
crowdsourcing in the biomedical sciences by organizing the
works into two broad classes: (i) crowd data mining, involving
the crowd generating large amounts of computable data as a
by-product of some other goal, and (ii) active crowdsourcing
ranging from microtasks involving identification, annotation
and reviewing to megatasks involving algorithm and strategy
development. Furthermore, the surveyed works are classified
by the major crowdsourcing platforms that determine the suc-
cess and limitations of these studies. Figure 1 illustrates the
pros and cons of various platforms with respect to the degrees
of difficulty in task design and crowd recruitment.

As we enter the era of big data, our ability to mine and make
sense of crowd data—either by itself or combined with other ex-
perimental data—becomes increasingly important for new dis-
covery. Search logs and social media provide access to millions
of user queries and comments each day. Although access to
some data remains restricted [18, 19], the general trend is to
make more data open for research and discovery [27] when se-
curity and privacy issues are properly managed. Another dis-
tinctive advantage of such platforms is the ability to conduct
longitudinal studies. To realize the full potential of crowd data,
advanced computer technologies and expert reviews would be
desired to dig gold from these very large, unstructured, hetero-
geneous and often noisy data [19, 23]. Mining crowd data can be
powerful, but not without limitations. For instance, Google Flu
Trends has been criticized for its accuracy [83].

Compared with other crowdsourcing platforms, we find that
labor markets (such as MTurk) are the most used in our sur-
veyed studies owing to their many convenient features. First,
MTurk is widely accessible and the setup of an MTurk experi-
ment is relatively straightforward to many bioinformatics re-
searchers. Second, the large existing pool of MTurk workers and
the monetary reward mechanism allow MTurk to offer a high
degree of diversity and the ability to complete tasks in a short
time frame. The cost of designing and running an MTurk experi-
ment is also modest compared with hiring physicians or re-
search scientists. However, these studies are not meant to
replace but to augment the traditional expert-driven studies;
e.g. in many studies, the crowd judgments have improved the
gold standard rather than replacing it [45, 56]. Finally, owing to
its popularity, many analytic methods have already been de-
veloped for aggregating crowdsourced judgments to obtain opti-
mal results. Nonetheless, MTurk has its own set of limitations,
not only technically (e.g. spammers or poorly performing work-
ers) and ethically (e.g. no guarantee of payment for their work)
[84], but also institutionally (e.g. difficulty in obtaining approval
to conduct such research studies in federal government as it is
viewed as a traditional customer survey instead of an emerging
research tool). MTurk studies are also highly dependent on do-
main experts for quality control and result evaluation. It is also
worth noting that MTurk is most suitable for simple and repeti-
tive tasks: complex and knowledge-rich tasks such as algorithm
and strategy development would not be appropriate for MTurk.
In general, the success of such studies in terms of the number
of participants, turnaround time and quality of results depends
on the design of the task, e.g. instructions and interface.

Scientific wikis and other similar Web-based platforms (e.g.
Google Drive) allow collaborative editing through the Internet.
These are best suited for curating biological topics of significant
importance (e.g. Gene Wiki) and are neither difficult nor expen-
sive to create [9]. Such tools can potentially be used by anyone
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for free from around the world. However, given the commonly
targeted problems (e.g. specific biomedical topics), expert-level
knowledge is often needed for making direct contributions
through such tools. Past studies have found it to be difficult to
attract sufficient volunteers, suggesting that wikis may not pro-
vide sufficient incentive to motivate the participation of ex-
perts, who are primarily researchers and scientists. As an
example, although the Google Drive study [9] allowed anony-
mized data entry to encourage more participants, this method
precluded the ability to systematically assess the impact of
such collaboration on student performance. Also, given the pub-
lic nature of such tools, it is difficult to measure the participa-
tion rate. Finally, it is challenging to evaluate the quality of
results and immediately reward the contributors, as it often in-
cludes new information not yet in the gold standard.

Using computer games as a crowdsourcing approach for
solving science problems is intriguing and promising, as it can
potentially reach a large and diverse player population. Also,
once the game is properly developed, no additional incentives
are needed for recruiting participation, as it is inherent in game
play. However, these potential benefits are commonly associ-
ated with high up-front costs and time in game development.
Furthermore, highly skillful game developers may not be easy
to find among typical bioinformatics researchers. Finally, the
scientific games are often associated with large number of
registered players but few active players.

Community challenges are highly useful at solving difficult
and complex science problems through forming and
strengthening a collaborative community. The competition as-
pect of such events strongly motivates participation and innov-
ation. On the other hand, like game design, organizing a science
challenge is non-trivial, as it often involves the preparation of
gold-standard training and test data for the purpose of algo-
rithm development and evaluation [78]. Moreover, the level of
participation is limited from the crowdsourcing standpoint as
expertise-level knowledge is typically required.

Emerging trends

As a result of this survey, we also identify some new trends of
crowdsourcing in biomedicine such as new crowd incentives,
participatory research and development, innovation in interface
design and open-source research. Although the motivation of
contributors has been found to vary with time [85], past studies
[10, 86] have identified several prime incentives that promote
crowd participation. Besides the studies involving labor mar-
kets, all surveyed studies offered intrinsic motivation to the
crowd [63], i.e. the task was worth doing for the task itself. Other
prominent reasons include the interest of people in tracking
their health information or looking up health information on-
line, interest in the broader field and interest in building reputa-
tion in the scientific community through personal branding.

As the crowdsourcing research community is discovering its
new role of problem solver as opposed to mere data provider [30],
science is no longer confined to a closed community of scientists.
Similar to the philosophy of designing with (and not just for) the
user in the human computer interaction community, we are
entering a new era where the role of patients is not limited to the
research subjects. Some other examples include inviting clin-
icians to design relational databases [87] and evaluate and design
medical decision support rules [88, 89], inviting the crowd to re-
view the results of NLP informatics algorithms [90] and identify
design problems in medical pictograms [91], and inviting the
crowd to correct errors by the crowd [39, 43, 57, 68].

Other than the highly customized megatasking interfaces
(e.g. game design), a significant effort is also being spent on the
design of the microtasking interface to make the task suitable
for an average crowdworker [56]. Burger et al. [5] identify one of
the reasons for misjudgment by the crowd as the discrepancy
between the interface instructions and the ultimate goals of the
investigators. While most existing labor market platforms allow
crowdsourcers to encode HTML elements (such as checkboxes,
textboxes) into the user interface, recent studies have also
leveraged and designed advanced features such as pre-high-
lighting words using text-mining tools [4, 53], real-time word
highlighting [39], encoding annotation guidelines into user op-
tions [4], allowing the contributors to input evidence [59] and
even incorporating some game design elements such as provid-
ing immediate feedback to contributors [45, 92].

In terms of quality control, there has been a trend of collect-
ing higher number of judgments per microtask, e.g. 30 in [93], 25
in [56], as opposed to the most popular factor five, and using
machine learning for consensus building [5, 56] and dynamic
pooling of contributors [5]. Finally, the crowdsourcing research
in biomedicine itself is suggesting a new direction of integrative
and complementary research. Several studies are sharing their
crowdsourced results [4] and the software infrastructure [39]
with the larger community, thereby encouraging integration of
crowd signals from multiple sources, e.g. user logs, physician
logs, EHR data and FDA reports [94].

A persistent question in crowdsourcing across all platforms
is to identify the small fractions of unevenly distributed con-
tributors who would turn in the best solutions [45, 95]. Finally,
the ultimate challenge is to engage the contributors and public
at large, and create a connection between scientists and the
community. Moreover, we agree with the earlier studies that
identified three key factors determining the success of a crowd-
sourcing project: finding the right problem, finding the con-
tributors with appropriate skills and aligning the motivation of
contributors with the needs of the study [86].

In conclusion, we find increasing interest in mining crowd
data and using crowdsourcing approaches in biomedical investi-
gations in recent years. By reviewing these studies in detail, we
found that past and current studies touch on wide application
areas in biomedicine that range from NLP to biocuration, gen-
omics and clinical research. Furthermore, through the compari-
son of major crowdsourcing platforms, we have highlighted the
strengths and weaknesses of different approaches as a guideline
for future research, and also identified emerging trends and re-
maining challenges such as new incentives (e.g. personal health),
and innovations in task designs and quality control.

Key Points

• Recent crowdsourcing studies for biomedicine are catego-
rized into mining crowd data and active crowdsourcing.

• The studies are summarized based on the crowdsourc-
ing platforms, such as labor markets, scientific games,
wikis and community challenges.

• Emerging themes include new incentives, participa-
tory research and development, innovation in inter-
face design and integrative research.
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