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Identifying concepts and relationships in biomedical text enables knowledge to be applied in computational 
analyses.  Many biological natural language processing (BioNLP) projects attempt to address this challenge, 
but the state of the art still leaves much room for improvement.  Progress in BioNLP research depends on 
large, annotated corpora for evaluating information extraction systems and training machine learning models.  
Traditionally, such corpora are created by small numbers of expert annotators often working over extended 
periods of time.  Recent studies have shown that workers on microtask crowdsourcing platforms such as 
Amazon’s Mechanical Turk (AMT) can, in aggregate, generate high-quality annotations of biomedical text.  
Here, we investigated the use of the AMT in capturing disease mentions in PubMed abstracts.  We used the 
NCBI Disease corpus as a gold standard for refining and benchmarking our crowdsourcing protocol.  After 
several iterations, we arrived at a protocol that reproduced the annotations of the 593 documents in the 
‘training set’ of this gold standard with an overall F measure of 0.872 (precision 0.862, recall 0.883).  The 
output can also be tuned to optimize for precision (max = 0.984 when recall = 0.269) or recall (max = 0.980 
when precision = 0.436).  Each document was completed by 15 workers, and their annotations were merged 
based on a simple voting method.  In total 145 workers combined to complete all 593 documents in the span 
of 9 days at a cost of $.066 per abstract per worker.  The quality of the annotations, as judged with the F 
measure, increases with the number of workers assigned to each task; however minimal performance gains 
were observed beyond 8 workers per task.  These results add further evidence that microtask crowdsourcing 
can be a valuable tool for generating well-annotated corpora in BioNLP.  Data produced for this analysis are 
available at http://figshare.com/articles/Disease_Mention_Annotation_with_Mechanical_Turk/1126402. 

 
1.  Background 

A large proportion of all biomedical knowledge is represented in text.  There are currently over 23 
million articles indexed in PubMed, and over one million new articles are added every year.  
Natural language processing (NLP) approaches attempt to extract this knowledge in the form of 
structured concepts and relationships such that it can be used for a variety of computational tasks.  
Just a few of many examples include identifying functional genetic variants [1], identifying 
biomarkers and phenotypes related to disease [2], and drug repositioning [3].   

Research in NLP is largely organized around shared tasks [4].  Periodically, the community 
settles on a particular challenge (e.g., identifying genes in abstracts [5]), develops manually 
annotated corpora that reflect the objective of the challenge, and then organizes competitions 
meant to identify the best computational methods.  These shared corpora make it possible for 
researchers to refine their predictive models (in particular to train models based on supervised 
learning) and to evaluate the performance of all approaches.  These gold standard annotated 
corpora are generally produced by small teams of well-trained annotators.  While this 
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methodology has been fruitful, the costs inherent to this approach impose limits on the numbers of 
different corpora as well as the size of individual corpora that can be produced.   

Microtask crowdsourcing platforms, such as Amazon’s Mechanical Turk (AMT), facilitate 
transactions between a ‘requester’ and hundreds of thousands if not millions of ‘workers’.  These 
markets make it possible to harness vast amounts human labor in parallel.  Typically a requestor 
sends a long list of small, discrete “Human Intelligence Tasks” (HITs) to the AMT platform which 
then distributes the HITs to workers.  Workers who choose to work on a given task are paid for 
each HIT they complete at a rate set by the requestor.   

Since their inception, microtask markets have attracted the attention of the NLP community 
because of the well-known costs of creating annotated corpora [6].  These markets are seen as a 
way of reducing these costs and dramatically extending the potential size of the datasets needed 
for training and evaluation [7].  This approach has been particularly useful for tasks that are easy 
for humans and clearly involve no domain knowledge.  For example, a large amount of research is 
devoted to sentiment analysis (also known as “affect recognition”) [6].  

Adoption of these techniques within the biomedical domain has been slower, probably because 
of the increased complexity of the texts that need to be processed and the concepts that need to be 
annotated.  That being said, BioNLP research groups are now exploring crowdsourcing. Two early 
studies demonstrated that a gold standard corpus of annotated clinical trials documents could be 
assembled through microtask crowdsourcing [8, 9].  Recently, others have successfully applied 
microtasking to validate predicted gene-mutation relations in PubMed abstracts [10] and for 
medical relation extraction [11].  Here we extend these efforts by implementing and testing a 
disease mention annotation task on PubMed abstracts using the AMT platform.   

2.  Task: disease mention annotation 

A fundamental step in nearly all NLP tasks is the identification of occurrences of concepts such as 
diseases, genes, or drugs.  Our goal for this work was thus to develop and benchmark a 
crowdsourcing protocol for annotating PubMed abstracts with concept occurrences. We chose the 
disease annotation task because a large, expert-crafted gold standard with information about inter-
annotator agreement was available for comparison [12] and because we expected that the concept 
of “disease” would be a tractable place to start testing the ability of “the crowd” to process 
complex biomedical text. 

2.1.  Original guidelines for creating the NCBI Disease corpus 

To produce the original gold standard disease corpus, annotators were instructed to highlight a 
span of text, to identify a concept from the Unified Medical Language System (UMLS) that 
matched the meaning of the highlighted text and to assign it to one of four categories.  The 
categories included: Specific Disease (e.g. “Diastrophic dysplasia”), Disease Class (e.g. 
“autosomal recessive disease”), Composite Mention (e.g. “Duchenne and Becker muscular 
dystrophy”), and Modifier (“e.g. colorectal cancer families”).  Expert annotators completed this 
task using the PubTator interface [13]. They followed an annotation guideline document that 
contained a number of additional rules such as “annotate duplicate mentions” and “do not annotate 
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overlapping mentions” [12].  The PubTator tool also automatically suggested annotations and 
provided direct access to a UMLS search tool.   

It is worth noting that these guidelines called for the annotation of a number of semantic types 
that are related to diseases but are not diseases in themselves.  For example, the instructions said to 
highlight mentions of semantic types such as “Sign or Symptom” (e.g. “Back Pain”) and 
“Acquired Abnormality” (e.g. “Hernia”).  They also contained certain criteria that left room for 
annotator interpretation such as the condition that the highlighted text contain “information that 
would be helpful to physicians and health care professionals”.  Further, the annotation rules 
occasionally depended on access to the UMLS system.  For example the decision about whether to 
annotate the ‘early onset’ part of phrases like “early onset colorectal cancer" was likely 
determined by whether or not a relevant concept in the UMLS existed that included the “early 
onset” qualifier.  These aspects of the annotation guidelines, as well as their length (nearly 1000 
words including the examples) and complexity, compelled us to write a new instruction set 
specifically designed for the AMT workers.  Other than the wording and examples provided, the 
largest difference was that our instructions did not call for annotators to identify the type of 
mention or to identify the concept referred to by the mention in the UMLS. 

2.2.  Instructions and task description provided to AMT workers 

The task posted on the AMT platform was described as:  “You will be presented with text from the 
biomedical literature which we believe may help resolve some important medically related 
questions. The task is to highlight words and phrases in that text which are diseases, disease 
groups, or symptoms of diseases.  This work will help advance research in cancer and many other 
diseases!” 

After agreeing to perform the task, they were presented with the following instructions and 
asked to take a qualification test.  Each rule in the instructions was followed by an animated GIF 
that illustrated how the correct annotations would look as they were created with our custom 
highlighting tool.  In the tool, users click to highlight single words, click and drag to highlight 
spans of text, and click again to unhighlight a span.  “Here are some examples of correctly 
highlighted text.  Please study these before attempting to take the qualification test.  Please also 
feel free to refer back to these examples if you are uncertain. Instructions:”  
 
1 Highlight all diseases and disease abbreviations  

“...are associated with Huntington disease ( HD )... HD patients received...” 
“The Wiskott-Aldrich syndrome ( WAS ) , an X-linked immunodeficiency…”  

2 Highlight the longest span of text specific to a disease  
“... contains the insulin-dependent diabetes mellitus locus …” 

and not just ‘diabetes’. 
“...was initially detected in four of 33 colorectal cancer families…” 

and not just ‘cancer’. 
“...In inherited breast cancer cases…” 

and not just ‘breast cancer’ 
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3 Highlight disease conjunctions as single, long spans.  
“...the life expectancy of Duchenne and Becker muscular dystrophy patients..” 
“... a significant fraction of breast and ovarian cancer , but undergoes…” 

4 Highlight symptoms - physical results of having a disease 
“XFE progeroid syndrome can cause dwarfism, cachexia, and microcephaly. Patients often 
display learning disabilities, hearing loss, and visual impairment.” 

5 Highlight all occurrences of disease terms 
“Women who carry a mutation in the BRCA1 gene have an 80% risk of breast cancer by 
the age of 70. Individuals who have rare alleles of the VNTR also have an increased risk of 
breast cancer”.  

6 Highlight all diseases, disease groups and key disease symptoms 
“The set of 32 families in which no BRCA1 alterations were detected included 1 breast-
ovarian cancer kindred manifesting clear linkage to the BRCA1 region and loss of the 
wild-type chromosome in associated tumors . Other tumor types found in BRCA1 mutation 
/ haplotype carriers included prostatic, pancreas, skin, and lung cancer, a malignant 
melanoma, an oligodendroglioma, and a carcinosarcoma” 

7 Do not highlight gene names  
“... the spastic paraplegia gene (SPG) was found to..”   

highlight only the disease mention, not the gene 
“...Huntington disease (HD) is caused by variations in huntingtin (HTT)...”  

the disease is highlighted, but the related gene is not. 
“...Niethold-Alfred syndrome (NAS) is caused by mutation in the gene NAS…” . 

In some cases the name of the gene may be the same as the name of the disease.  In these cases 
you should only highlight the text if it is referring to the disease and not to the gene.  The first 
NAS is highlighted while the second is not. 

2.3.  Worker task flow: Qualification test, 4 training examples, then real tasks 

Before gaining access to the HITs, the workers had to pass the qualification test.  No other worker 
filters (e.g. HIT approval %, country, etc.) were employed.  This test was a series of true/false 
questions that assessed their comprehension of the annotation rules based on real examples.  We 
allowed workers to pass with a fairly lenient threshold of 80% correct.   

Once a worker earned the qualification, their first HIT was a survey containing questions about 
gender, age, occupation, education, and motivation.  Following the survey, each HIT was to 
annotate disease mentions in a PubMed abstract. The HITs were completed on a custom website 
running in an iframe in the context of the AMT site.  Workers were paid equally for each HIT 
($0.06), could complete as many as desired, and could leave the site and return at any time.  The 
payment per HIT was arbitrarily selected to be slightly more than in previous studies (e.g. [8] paid 
$0.03 for a similar text annotation task). 

Following the survey, the next four HITs were manually selected ‘training abstracts’ that 
provided unambiguous examples of key annotation rules.  After submitting their annotations for 
these abstracts, the system displayed their agreement with the gold standard annotations.   
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Figure 1 shows an example of the feedback screen that a worker would see after annotating a 
gold standard document.  Workers were shown the annotations that they missed, any that they 
incorrectly marked, and their F score for that document.  Based on earlier studies we found that 
this feedback was an effective way to train workers to perform the task correctly, measurably 
improving performance with respect to simply providing the instructions.  After the first four 
training documents were completed, the workers were presented with randomly selected abstracts 
to annotate.  For 10% of the abstracts, feedback based on the gold standard was supplied to them 
as it was for the original four training documents.  If the workers scored below an F measure of 
0.5 on three gold standard documents in a row, they were blocked from continuing.  When the 

Figure 1:  Feedback interface for annotators. 
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workers annotated a non-gold standard document, they were provided similar feedback, but 
instead of a single set of ‘correct’ annotations, the workers were shown the annotations of up to 5 
other workers as additional underlines and no F measure was supplied.  The feedback interface 
informed the workers when they had completed an evaluation case or a regular HIT.   

2.4.  Data 

The experiment described here used the 593 abstracts in the Training Set of the NCBI Disease 
Corpus [12].  These were divided into three groups: the four training documents, the 10% (60) that 
were used to provide interspersed gold standard feedback, and the remaining 529 for which no 
gold standard-based feedback was provided.  The results for each document are collected prior to 
the worker seeing any feedback and they only see each document once so, for the purposes of 
overall annotation quality assessment, all documents are treated equally.  

2.5.  Quality statistics 

We compared the annotations generated by the AMT with the annotations in the NCBI Disease 
Corpus using strict matching.  An annotation counted as a true positive only if it exactly matched 
the span of the corresponding gold standard annotation.  With exact matches as our comparison 
metric, we calculated true positives, false positives, and false negatives across all annotations in 
the dataset and used these to calculate global Precision (TP/(TP+FP)), Recall (TP/(TP+FN)) and F 
measure (2*P*R)/*P+R). (This method, referred to as micro-averaging, essentially treats the 
corpus as one large document.) 

3.  Results 

3.1.  Workers 

Out of 346 that took the qualification test, 145 workers passed and completed the annotation of at 
least one abstract.  Work was distributed unevenly, with 23 workers completing over 100 abstracts 
each, 80 completing over 10, and 65 completing 10 or less.  Figure 2 shows the number of 
abstracts completed per worker.  

Figure 2: Number of abstracts processed per worker 
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Figure 3 illustrates that overall, the workers generally performed at a high level for this task.  
Only one worker was blocked from continuing after repeatedly performing poorly on the 
embedded gold standard test questions.  That worker annotated 24 post-training abstracts with an 
average F-measure of 0.62 before being blocked. The average F score per worker across all of 
their annotations was 0.764 with a standard deviation of 0.130.  For workers that processed more 
than ten abstracts, the average F score increased only slightly to 0.767 with the standard deviation 
decreasing to 0.078.  The average F score of workers that completed a hundred or more abstracts 
was 0.791 with a standard deviation of 0.066.  This result generally reiterates the findings in [10], 
which observed a clear increase in performance for workers that completed more than 100 of their 
gene-mutation validation tasks.   However, the correlation between the number of tasks performed 
and the average quality of the work was not statistically significant in this experiment. 

3.2.  Wisdom of the crowd aggregation function 

For this experiment, we collected annotations from 15 workers for each document (excluding the 
first four training examples which all workers saw).  Following [8] and others, we employed a 
simple voting strategy to merge the annotations from multiple workers.  For each annotation, we 
counted the number of different workers to produce that annotation and set a threshold K above 
which the annotation would be kept.  We measured the quality of the annotation set generated 
based on all possible values of K as compared to the original gold standard documents.  Figure 4 
shows the Precision, Recall and F at each value of K.  Precision varies from 0.436 at K=1 to 0.984 
at K=15, Recall varies from 0.980 at K=1 to 0.269 at K=15, and the F measure peaks at 0.872 at 
K=6 (Precision = 0.862, Recall = 0.883).   

Figure 3: Quality of annotations for each worker compared to number of abstracts processed. 

Pacific Symposium on Biocomputing 2015

288

 B
io

co
m

pu
tin

g 
20

15
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

92
.2

6.
25

2.
1 

on
 0

5/
03

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



 
 

 

 

3.3.  Cost 

We paid $.066 per HIT with $.06 going to the worker and 10% of that (.006) going to Amazon.  
At 15 workers per document, we paid 99 cents per abstract.  In addition, we paid $.066 for each 
worker to take the demographic survey and $.264 for them to complete the first four training 
documents.  145 workers passed the qualification test and took part in this experiment.  The total 
cost was thus 145*.33 (survey and training) + 589*.99 (annotation) = $630.96.  All 589 documents 
were annotated in a span of 9 days.  We left the AMT job running until all tasks were completed. 

To gauge the impact of annotator redundancy (which equates to cost), we estimated the 
expected performance of the system with different numbers of workers (referred to as N) per 
document.  (N for the complete collection, whose quality is depicted in Figure 4 was 15.)  Using 
this data, we estimated performance at different values of N by sampling from the workers who 
completed each document.  For example, to estimate performance at N = 6, for each document, we 
randomly selected the annotations from 6 of the workers who annotated that document, calculated 
the best value for the voting threshold K and recorded the associated F measure.  For each value of 
N, we repeated this random process ten times and recorded the mean and standard deviation for 
the maximum F measure per N.  As Figure 5 illustrates, the range of F scores varies from 0.78 at 
N = 1 to 0.87 at all N greater than 7.  The largest increase in performance is between N = 2, 
average F = 0.78 and N = 3, where average F = 0.84.  The leveling off of performance increases 
with increasing workers suggests that, for this task and with this voting strategy, a good balance 
between cost and quality may be found between 3 and 8 workers (reducing our cost estimates 
above by more than half). 

Figure 4: Impact of voting threshold K on the level of agreement with the gold standard. 
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3.4.  Machine learning 

We compared the performance of the BANNER machine learning system [14] given two training 
sets: a) the original gold standard training set (593 abstracts), and b) the annotations of the 589 
abstracts considered here at the voting threshold K=6.  Training the model with the original gold 
standard produced an F measure of 0.785 on the 100 abstract test set from the NCBI corpus 
(Precision 0.808 , Recall 0.764).  Training the same system on the AMT-generated data produced 
an F measure of 0.739 (Precision 0.778 , Recall 0.703).  While this model performed worse on the 
selected test set than the gold-standard-trained system, it performed substantially better than prior 
approaches including a BANNER model trained on the original AZDC Disease corpus (F = 0.35) 
and the NCBO Annotator using just the Human Disease Ontology (F = 0.26).   

Figure 5: Impact of increasing the number of workers per abstract on annotation quality 
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3.5.  Demographics 

According to the pre-task survey, the workers that contributed to this study were 59% female and 
41% male.  They had a mean age of 32 with 68% between 21 and 35, 19% between 36 and 45, and 
11% 46 or older.  Regarding education, workers were widely distributed including one worker that 
reported not finishing high school and four that completed PhD programs.  The largest group 
(28%) had completed a four-year college degree, with an additional 12% completing a masters 
program.  20% of our AMT workforce reported being unemployed, 15% were students, with the 
remaining 65% employed in a wide range of occupations with the top categories being 
“Technical” and “Science”.  In general, all of these trends are in agreement with prior 
demographic studies of the AMT worker population as a whole [15].  Asked why they worked on 
our HITs in particular, 85% selected “I want to make money”, 69% selected “I want to help 
science” and 17% selected “Entertainment” (they could select multiple categories).  Along with 
the consistent motivation to earn money, many workers expressed happiness in performing a task 
that (a) contributed to science and (b) involved them with subject matter that they found 
educational.  This was reiterated in many emails received from the workers. 

4.  Discussion 

One of the key rating-limiting factors in the advancement of the field of NLP is the production of 
annotated corpora.  This is perceived to be even more the case for biomedical applications where 
the language is complex and full of jargon. This experiment demonstrated how a disease mention 
annotation corpus with more than 500 PubMed abstracts could be assembled for about $600 in less 
than two weeks.  Further, we provided evidence that the same system could produce a corpus of 
the same size with a similar level of quality in much less time and at much lower cost by reducing 
the number of redundant annotators per document (Figure 5). Previous work demonstrated the 
potential of crowdsourcing for the creation of gold standard mention annotation corpora with text 
from clinical trials announcements [8, 9].  Here we extended those results by: testing 
crowdsourcing for disease annotation on a new text type (PubMed abstracts), benchmarking the 
impact of increasing the number of annotators per task from 5 to 15, and testing the results of the 
crowdsourced annotations as input to a machine learning system.  Based on these results and on 
related studies that have achieved good performance for relation verification [10] and extraction 
[11], we are cautiously optimistic that the crowdsourcing paradigm will be broadly applicable 
across many BioNLP annotation tasks. 

Crowdsourcing-based annotation systems should make it possible to create far more and far 
larger training sets than would be conceivable with the expert-only approach.  But they will be 
different.  Like the dataset generated here, most crowdsourced corpora will not reproduce gold 
standards exactly.  In one sense this is a weakness.  Existing NLP systems assume that training 
and testing data are perfect and binary.  A span of text is a disease mention or it is not and there is 
no grey area.  Evaluations of crowd-generated data, such as our assessment of the performance of 
the crowd-trained BANNER model, may thus show less favorable outcomes.  However, in many 
cases in language the binary premise is likely not reflective of reality.  There are always edge 
cases and ambiguities.  Crowdsourced data offer the potential to identify the ambiguities of 
language and of annotation tasks in a computationally accessible way that could lead to important 
advances.  To illustrate, consider the sentence : “Significant differences were found between PWS 
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patients, SIB controls, and WC controls in the prevalence of febrile convulsions, fever-associated 
symptoms, and temperature less than 94 degrees F”.  In the gold standard, the only annotation 
captured is “PWS”, an acronym for Prader-Willi syndrome.  In the AMT results, 15 of 15 workers 
highlighted “PWS”, but 13 of 15 workers also highlighted “febrile convulsions” and 11 
highlighted “fever-associated symptoms”.  Both of these were considered false positives though in 
other documents highly similar terms such as “benign familial infantile convulsions” and “fever” 
were part of the gold standard annotations.  Another example is provided in the sentence: “We 
report the identification of a female patient with the X-linked recessive Lesch-Nyhan syndrome 
(hypoxanthine phosphoribosyltransferase [HPRT] deficiency)”.  In the gold standard, the phrase 
“Lesch-Nyhan syndrome” is annotated.  However, 11 of 15 AMT workers selected “X-linked 
recessive Lesch-Nyhan syndrome” instead.  (In other gold standard annotations, “X-linked” and 
“recessive” are often included as modifiers in multi-word disease phrases.)  Finally, consider the 
following title: “von Willebrand disease type B: a missense mutation selectively abolishes 
ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib”.  In the gold 
standard, both “von Willebrand disease type B” and the second “von Willebrand” are annotated.  
13 of 15 workers highlighted the first occurrence correctly yet only 2 highlighted the second, 
resulting in a false negative.  The next sentence of this abstract begins with “von Willebrand factor 
(vWF) is a multimeric glycoprotein” making it questionable whether the second “von Willebrand” 
was referring to the gene or the disease.   

We do not bring these examples up to criticize the NCBI Disease Corpus itself.  Arguments 
could be made for these decisions.  The important point is that such edge cases occur in all corpus 
creation tasks.  As a product of the multi-annotator perspective provided by (and in fact required 
by) crowdsourcing, ambiguity can be quantified directly.  Emerging research is showing that such 
levels of disagreement are signals that can be used both during the training of machine learning 
models and in more realistic assessments of their predictions [11]. 

One of the key contributions of the work presented here is to solidify the potential of the 
crowd of people who will respond to an open call for participation to effectively process 
biomedical text.  Here, we focused on the AMT worker population but other crowds might be 
tapped for future work.  While the AMT workers were shown to be effective, the per-unit cost of 
this framework does put constraints on the total amount of work that can be performed.  
Volunteer-based “citizen science” opens up the potential for far more work at lower cost [16].  As 
long as the collective mind of the crowd continues to outperform computational methods, it may 
even make sense to tap the crowd to directly perform information extraction tasks in support of 
biomedical research objectives rather than solely applying them to train computational systems. 
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