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DrugMechDB: a Curated Database 
of Drug Mechanisms
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Computational drug repositioning methods have emerged as an attractive and effective solution 
to find new candidates for existing therapies, reducing the time and cost of drug development. 
Repositioning methods based on biomedical knowledge graphs typically offer useful supporting 
biological evidence. This evidence is based on reasoning chains or subgraphs that connect a drug to a 
disease prediction. However, there are no databases of drug mechanisms that can be used to train and 
evaluate such methods. Here, we introduce the Drug Mechanism Database (DrugMechDB), a manually 
curated database that describes drug mechanisms as paths through a knowledge graph. DrugMechDB 
integrates a diverse range of authoritative free-text resources to describe 4,583 drug indications with 
32,249 relationships, representing 14 major biological scales. DrugMechDB can be employed as a 
benchmark dataset for assessing computational drug repositioning models or as a valuable resource for 
training such models.

Background & Summary
Drug repositioning, the identification of novel uses of existing therapies, has become an increasingly attractive 
strategy to accelerate drug development1. By leveraging available genomics and biomedical domains, computa-
tional drug repositioning models have emerged as an unprecedented opportunity to analyze large amounts of 
data, reducing the time and effort required to identify repositioning candidates.

Computational repositioning models frequently rely on drug-drug and or disease-disease similarity2,3. 
However, the complex and contextual biological associations that underlie the relationship between a drug and 
a disease often require a more sophisticated explanation. To address this, biomedical knowledge graphs have 
emerged as a powerful tool capable of capturing biological associations that provide a more comprehensive 
understanding of the link between a drug and a disease4.

Biomedical knowledge graphs consist of nodes representing biological concepts (such as genes, drugs, dis-
eases, and pathways) and edges describing their relationship (such as drugs treating diseases, or diseases being 
associated with genes)4. Repositioning methods based on knowledge graphs leverage the biological associations 
captured on the network to provide supporting evidence for the model prediction. This is typically achieved by 
identifying subsets of reasoning chains or subgraphs within the larger network, providing a mechanistic ration-
ale for why a particular drug might be effective against a particular disease, despite the absence of pre-existing 
evidence to validate the association5.

However, one major challenge in determining the plausibility of the supporting evidence provided by bio-
medical knowledge graphs is the absence of a gold standard, well-defined collection of drug mechanisms. Such a 
reference point is necessary to evaluate the mechanistic accuracy of predictions made by repositioning models. 
While validation by domain experts is an alternative approach, it is a laborious and resource-intensive process 
that demands significant expertise.

Current efforts to construct biomedical networks integrate diverse knowledge bases5–8 or extract knowledge 
from literature using natural language processing techniques9–11. However, there are several challenges in creat-
ing an accurate and comprehensive knowledge graph that serves as a benchmark for repositioning discoveries. 
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They often lack contextual information, not providing enough information about the relationship between a 
drug and a disease. Moreover, semantic interoperability is not present in high-quality, where concepts and ter-
minologies within the network are unclear.

To fill this gap, we created Drug Mechanism Database (DrugMechDB), a manually curated database of drug 
mechanisms expressed as paths through a biomedical knowledge graph. In this work, we present our first com-
plete version of DrugMechDB, comprising 5,666 mechanistic paths that explain 4,583 indications. Each record 
is derived from free-text descriptions, where each captured concept is normalized to a concept type and mapped 
to an identifier. We provide a detailed description of the information captured by mechanistic paths, elucidating 
expressiveness of the database. We assess the quality of association by leveraging an external biomedical knowl-
edge graph. The detailed information contained within DrugMechDB serves as a useful community reference 
for the development and evaluation of machine learning drug repositioning models. Researches can leverage 
mechanistic paths of DrugMechDB to enhance the accuracy and effectiveness of their algorithms, leading to 
more informed decisions.

Methods
In DrugMechDB, each curated indication is depicted as a directed graph (Fig. 1). Here, we provide a detailed 
explanation of the data resources utilized and the curation process undertaken to build DrugMechDB.

Data sources. DrugMechDB was constructed considering drug-disease indications from the DrugCentral 
database, using the version downloaded on September 18, 202012. The main source for curation arises from 
either the Mechanism of Action section from DrugBank13, or the Description section within Inxight Drugs14. 
Other resources included review articles, GeneOntology15,16, UniProt17, Reactome18, and well-sources Wikipedia 
articles19, which references were authenticated by curators. Primary literature sources containing experimental 
results were excluded, ensuring that only highly curated and high-confidence information was included.
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{'graph':
{'_id': 'DB01200_MESH_D010300_1',
'disease': "Parkinson's disease",
'disease_mesh': 'MESH:D010300',
'drug': 'bromocriptine'},

'links':
[{'key':'positively regulates', 'source':'bromocriptine', 'target':'Dopamine D2 receptor'},
{'key':'positively regulates', 'source':'bromocriptine', 'target':'Dopamine D3 receptor'},
{'key':'positively correlated','source':'Dopamine D2 receptor', 'target':'dopamine'},
{'key':'positively correlated','source':'Dopamine D3 receptor', 'target':'dopamine'},
{'key':'located in', 'source':'dopamine', 'target':'dopaminergic cell groups'},
{'key':'located in', 'source':'dopaminergic cell groups','target':'substantia nigra'},
{'key':'participates in', 'source':'substantia nigra', 'target':'nigrostriatal tract'},
{'key':'affected by', 'source':'nigrostriatal tract', 'target': Parkinson's disease'}],

'nodes':
,}'enitpircomorb':'eman','gurD':'lebal','179100D:HSEM':'di'{[
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{'id':'MESH:D004298', 'label':'ChemicalSubstance', 'name':'dopamine'},
{'id':'UBERON:0035999','label':'GrossAnatomicalStructure','name':'dopaminergic cell groups'},
{'id':'UBERON:0002038','label':'GrossAnatomicalStructure','name':'substantia nigra'},
{'id':'UBERON:0014169','label':'GrossAnatomicalStructure','name':'nigrostriatal tract'},

,]}'esaesids'nosnikraP':'eman','esaesiD':'lebal','003010D:HSEM':'di'{

'reference':
['https://go.drugbank.com/drugs/DB01200#BE000058',
'https://en.wikipedia.org/wiki/Parkinson%27s_disease']}
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Fig. 1 DrugMechDB indication structure. (a) Indication JSON formatting. Each record contains several keys 
that produce a graph that can be programmatically accessed: ‘graph’, ‘links’, ‘nodes’, and ‘reference’. The unique 
path identifier is included under the graph field (‘_ id’). (b) Visualized example of one entry in DrugMechDB:  
a branching path from Bromocriptine to Parkinson’s disease (‘_ id’: DB01200_MESH_D010300_1).
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Data model. DrugMechDB provides researchers with a consistent and structured information source 
on drug mechanisms. To achieve this, we adopted the Biolink Model (version 1.3.0)20. The Biolink Model is a 
standardized hierarchy of biomedical entity classes that serves as a universal framework for biomedical data 
representation and linkage21. It encompasses a wide range of entity types such as genes, proteins, diseases, drugs, 
and biological processes, and defines the predicates that describe the relationships between these entity types.

The standardization of data in DrugMechDB to the Biolink Model enables the mapping of concepts and 
relationships to a common vocabulary, thus allowing interoperability between various data sources. Therefore, 
researchers can easily combine data from DrugMechDB with other biomedical data sources that also employ 
the same data model, enabling researchers to perform comprehensive analyses and gain new insights into drug 
mechanisms of action. A list of the DrugMechDB concepts and corresponding relationships is found in Table 1.

Path curation. While free-text descriptions offer a comprehensive narrative of a drug’s mechanism, they can 
sometimes include information that is not directly relevant to the mechanism of action. Consequently, the process 
of defining the most suitable relationships that describe a drug’s action can be subjective, resulting in inconsistent 
annotations. To ensure consistency, accuracy, and clarity among path representations of DrugMechDB records, 
we established a formal curation guide. Briefly, we ensured to maintain the order of interactions to reflect cause 
and effect between two concepts, representing the sequence of events or influences. To streamline the paths and 
eliminate unnecessary complexity, we removed any information that did not significantly contribute to the over-
all understanding of the drug’s action. Additionally, when multiple related concepts were involved in a sequence 
of interactions, we summarized them into a single all-encompassing concept, allowing for a more concise and 
cohesive representation of the drug’s mechanism, reducing redundancy, and improving the clarity of the path.

Lastly, to enhance standardization and minimize inconsistencies in vocabulary conventions, we relied on 
the Node Normalization service (version 2.1.1)22. Each node recorded in DrugMechDB was mapped to the pre-
ferred CURIE prefix and label, along with the semantic type defined by the Biolink Model.

Data Records
The first completed DrugMechDB version (2.0.1)23 captures 4,583 curated indications between 1,580 drugs 
and 744 diseases. DrugMechDB is a knowledge graph with 14 types of nodes and 71 types of directed edges. 
Currently, it captures 32,588 nodes, and 32,249 edges. We provide a breakdown of the number of edges by con-
cept type in Table 1.

The number of nodes contained in DrugMechDB by concept type is shown in Fig. 2a, the ‘BiologicalProcess’ 
concept type appears most frequently as a node on the graph, comprising 24.55 % of the total nodes. Among 
the total 725 meta-edges, the most common connection occurs between a ‘Protein’ to a ‘BiologicalProcess’ con-
cept type, linked by a ‘positively regulates’ edge type, accounting for 11.29 % of the total meta-edges (Fig. 2b).  
Each indication is explained through a mechanistic path, a sequence of nodes, and relationships. The current 
version of DrugMechDB captures a collection of 5,666 curated mechanistic paths. These paths are grouped into 
297 distinct types based on the sequence of concept types they encompass (Fig. 2c).

The complexity of interactions underlying in drug-disease associations can lead to a wide variation in 
the number of nodes and edges. Figure 3a,b depict the distribution of the number of nodes and edges cap-
tured in DrugMechDB indications, respectively. Some records are relatively simple, with only a few nodes 
and edges, while others are much more complex, with many interconnected nodes and edges, reflecting the 
complexity nature of the biological connections. Certain drugs exert their therapeutic effects by engaging in 

Node types Abbreviation Identifier Sources Unique edge-types Total edge count

GrossAnatomicalStructure A Uber-anatomy ontology (UBERON)25 24 534

BiologicalProcess BP Gene Ontology (GO)15,16 38 8,235

Cell C Cell Ontology (CL)26 19 186

CellularComponent CC Gene Ontology (GO)15,16 15 456

Disease D Medical Subject Headings (MeSH) 12 147

ChemicalSubstance CS
Medical Subject Headings (MeSH)

35 2,474
Chemical Entities of Biological Interest (ChEBI)27

Drug DX
Medical Subject Headings (MeSH)

38 6,886
DrugBank13

GeneFamily G InterPro28, Pfam29 21 958

MolecularActivity M Gene Ontology (GO)15,16 21 474

MacromolecularComplex MC Protein Ontology (PR)30 1 5

Protein P UniProt17 33 8,704

PhenotypicFeature PF Human Phenotype Ontology (HP)31 17 1,499

Pathway PW Reactome Pathway (reactome)18 20 348

OrganismTaxon T NCBITaxon (taxonomy)32 5 1,343

Total 32,249

Table 1. DrugMechDB concept types.
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multiple simultaneous interactions. This can entail blocking multiple targets or influencing multiple pathways. 
In DrugMechDB, such situations are represented by branching paths (Fig. 3c).

All curated records in DrugMechDB are structured in a standardized format, located within the file indi-
cation _ paths.json. Each record is represented as a directed graph with the keys: ‘graph’, ‘links’, ‘nodes’, and 
‘reference’ (Fig. 1). Indication information, including the drug and disease names and their external identifi-
ers, is captured within ‘graph’ key. Here, we provide a ‘_ id’ value, which is a unique identifier of each record. 
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Fig. 2 DrugMechDB summary elements. (a) Total number of nodes found by concept type. (b) Meta-edges of 
DrugMechDB, displays the top three most representative association types between concept types. (c) Sankey 
diagram depicts the most commonly occurring mechanistic paths, where each rectangle corresponds to a 
concept type (abbreviated), and the thickness reflects to the number of connections between them.
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Fig. 3 Distribution of DrugMechDB components. Distribution of (a) nodes and (b) edges across mechanistic 
paths. (c) Distribution of paths that describe curated indications.
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The relationships and concepts associated to the mechanistic paths of each record are defined within the ‘links’ 
key. In this key, the ‘source’ and ‘target’ identifiers of the concepts are provided, along with a ‘key’ field that 
indicates the specific type of relationship between the two nodes. Further information about the concepts in 
the graph of each record is described within the ‘nodes’ key. Here, each node contains the fields ‘id’, ‘name’, and 
‘label’ corresponding to the external identifier, the concept’s name, and the type of concept respectively. Lastly, 
the ‘reference’ key provides a hyperlink to the data source(s) from which the record was curated.

technical Validation
systematic validation of DrugMechDB associations. Validating the reliability of a knowledge graph 
is a crucial step that ensures the correctness of the captured information. In this work, we assessed the accuracy of 
captured DrugMechDB associations by comparing them to existing data sources. For this, we leverage an external 
biomedical knowledge graph: Mechanistic Repositioning Network (MechRepoNet)24.

Briefly, MechRepoNet is a comprehensive biomedical knowledge graph that was constructed by integrating 
18 different data sources and using Biolink Model for standardization. Given that MechRepoNet encompasses a 
wider network that spans various domains, we employed it as an external benchmark for verifying the plausibil-
ity of the associations recorded in DrugMechDB.

Evaluating association types between concept types (ignoring edge predicates), we found that 2,924 (28.71%) 
of the 10,184 unique associations captured in DrugMechDB are also contained within MechRepoNet. To demon-
strate that DrugMechDB associations are broadly consistent with the knowledge captured in MechRepoNet, we 
conducted a bootstrapping analysis. For each DrugMechDB association type, nonparametric bootstrapping was 
applied to sample simulated association types (with replacement) to calculate the percentage of matching with 
MechRepoNet. This procedure was repeated 1,000 times to construct a percentage distribution from which 
the mean and 99 % CI were calculated. The p-value was calculated as the fraction of the distribution in which 
the simulated percentage of matching was greater than or equal to the observed percentage. Results in Table 2 
show that the average p-value of the ten most frequent association types is less than 0.001, demonstrating that 
observed overlapping between DrugMechDB and the broader knowledge captured by MechRepoNet is unlikely 
to occur by chance.

The association type ‘BiologicalProcess’-‘BiologicalProcess’ has the least overlap among the most frequent 
DrugMechDB association types, highlighting that MechRepoNet does not cover all curated association types of 
DrugMechDB. To incorporate the missing information in MechRepoNet, we propose using DrugMechDB as a 
roadmap, helping to prioritize the most significant relationships involved in drug mechanisms and facilitating 
the integration of biomedical sources.

In summary, DrugMechDB is a comprehensive resource that provides human interpretable explanations 
when producing computational repositioning predictions, it has the potential to help domain experts to better 
assess whether a model’s candidate provides enough biological evidence. We believe that DrugMechDB offers 
several advantages. First, it serves as a useful resource for researchers looking to understand drug pharmaco-
dynamics. Second, it is a valuable training data set that can be incorporated into drug repositioning models 
that focus on providing supporting plausible reasoning chains. Lastly and as described above, DrugMechDB 
functions as a roadmap for knowledge graph expansion, helping to prioritize biological associations that most 
commonly appear in curated drug mechanisms.

Usage Notes
DrugMechDB provides structured information about drug mechanisms based on a wide range of primary and 
secondary sources. We believe that DrugMechDB will be a valuable resource for a wide range of computational 
analyses, including, for example, the identification of drug repositioning candidates. While we are confident in 
the overall accuracy of the DrugMechDB as a data set for training and/or evaluating machine learning models, 
we encourage users to critically assess any individual records or assertions used in downstream analyses. Variance 
could be due to a wide variety of factors, including (but not limited to) differences in data modeling, multiple 
possible mechanisms described in the literature, and/or errors in structuring knowledge in our curation process.

Association type DMDB count MechRepoNet overlap (%) Mean bootstrapping overlap (99 (%) CI) P-value

Protein-BiologicalProcess 4,699 40.15 2.21 (1.78–2.66) <0.001

Drug-Protein 4,475 60.78 4.74 (4.02–5.45) <0.001

BiologicalProcess-BiologicalProcess 2,889 0.38 0.29 (0.10–0.55) 0.137

Protein-Protein 2,166 2.15 0.09 (0–0.13) <0.001

BiologicalProcess-Disease 1,897 56.48 39.40 (36.90–41.96) <0.001

PhenotypicFeature-Disease 1,352 6.41 0.002 (0–0.07) <0.001

OrganismTaxon-Disease 1,340 30.76 1.37 (0.82–1.94) <0.001

BiologicalProcess-OrganismTaxon 1,161 11.59 6.08 (4.9–7.40) <0.001

BiologicalProcess-PhenotypicFeature 1,136 23.59 18.71(16.37–21.12) <0.001

ChemicalSubstance-BiologicalProcess 972 9.13 3.46 (2.36–4.62) <0.001

Table 2. Validation of the ten most frequent DugMechDB association types.
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Code availability
The DrugMechDB project website is at https://sulab.github.io/DrugMechDB/. The code to reproduce results, 
along with curation guidelines, is available in DrugMechDB GitHub repository at https://github.com/SuLab/
DrugMechDB/tree/2.0.1. All relevant files are hosted at https://doi.org/10.5281/zenodo.813935723. Additionally, 
contributions of curated mechanistic paths can be done by pull request to the file submission.yaml at SuLab/
DrugMechDB/blob/main/SubmissionGuide.md.
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