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In response to the emergence of SARS-CoV-2 variants of concern, the global 
scientific community, through unprecedented effort, has sequenced 
and shared over 11 million genomes through GISAID, as of May 2022. This 
extraordinarily high sampling rate provides a unique opportunity to track 
the evolution of the virus in near real-time. Here, we present outbreak.info, 
a platform that currently tracks over 40 million combinations of Pango 
lineages and individual mutations, across over 7,000 locations, to provide 
insights for researchers, public health officials and the general public. We 
describe the interpretable visualizations available in our web application, 
the pipelines that enable the scalable ingestion of heterogeneous sources 
of SARS-CoV-2 variant data and the server infrastructure that enables 
widespread data dissemination via a high-performance API that can be 
accessed using an R package. We show how outbreak.info can be used for 
genomic surveillance and as a hypothesis-generation tool to understand the 
ongoing pandemic at varying geographic and temporal scales.

In December 2019, a series of cases of pneumonia of unknown origin 
appeared in Wuhan, China and on 7 January 2020, the virus responsible 
for the diseases was identified as a novel coronavirus, SARS-CoV-2 (ref. 1).  
The first SARS-CoV-2 genome was made publicly available on 10 January 

2020 (refs. 2,3). Since then, the global scientific community, through 
an unprecedented effort, has sequenced and shared over 11 million 
genomes through GISAID (https://gisaid.org/), as of May 2022 (ref. 4). 
To keep track of the evolving genetic diversity of SARS-CoV-2, Rambaut 
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These tools, however, were not designed to track thousands of new 
genomes per day and given that building phylogenies for large sets of 
genomes is computationally intensive and time consuming, obtaining 
timely insights from the data is often problematic23; however, the high 
sampling rate of the virus has opened up the possibility of tracking the 
pandemic using available near real-time genomic data without the need 
for computationally intensive modeling.

Here, we present outbreak.info, a platform that currently tracks 
over 40 million combinations of Pango lineages and individual muta-
tions, across over 7,000 locations, to provide insights for researchers, 
public health officials and the general public. In the following sections, 
we describe the data pipelines that enable the scalable ingestion and 
standardization of heterogeneous data on SARS-CoV-2 variants, the 
server infrastructure that enables the dissemination of the processed 
data and the client-side applications that provide intuitive visualiza-
tions of the underlying data.

Results
The growth rate of a given viral lineage is a function of epidemiology 
and its intrinsic biological properties (Fig. 1a). For example, the B.1.177 
lineage, characterized by an A222V amino acid substitution in the spike 
gene, increased in prevalence in Europe during the summer of 2020  
(ref. 24). While initially thought to be more transmissible, it was eventually  
shown that the increase in prevalence was due to a resurgence in travel 
and not due to increased transmissibility. In contrast, a few months 
later, the B.1.1.7 lineage was shown to be 40–60% more transmissible 
than previously circulating lineages and this intrinsic biological prop-
erty led to the rapid growth in its prevalence worldwide25,26. Epide-
miological factors such as mobility27,28, mask usage29 and public health 
interventions30 vary over time and across geographies worldwide, 
whereas biological properties are a function of the mutations found 
in a given lineage (Fig. 1a). Hence, to maximize the utility of genomic 
data for surveillance, we built outbreak.info to enable the explora-
tion of genomic data across three dimensions: geography, time and 

et al. developed a dynamic phylogeny-informed nomenclature (Pango) 
to classify SARS-CoV-2 lineages5. As of May 2022, over 2,000 lineages 
have been designated, which has enabled public health agencies such as 
Public Health England, the Centers for Disease Control and Prevention 
(CDC) and the World Health Organization (WHO) to identify variants of 
concern (VOCs), variants of interest/variants under investigation (VOIs/
VUIs) and variants under monitoring/variants being monitored (VUMs/
VBMs) based on the phenotypical characterization of these lineages6. 
Currently, the only designated VOC is the B.1.1.529* (Omicron) lineage, 
which exhibited very rapid growth and the ability to substantially avoid 
antibody neutralization7,8. There have been four VOCs previously des-
ignated over the course of the pandemic: the B.1.1.7* (Alpha; * denotes 
the lineage and any of its sublineages) lineage, resulting in increased 
transmissibility9; the B.1.351* (Beta) lineage, exhibiting immune eva-
sion10; the P.1* (Gamma) lineage, exhibiting immune evasion11; and the 
B.1.617.2* (Delta) lineage, exhibiting increased transmissibility due to 
the P681R mutation in the spike gene12.

The emergence of VOCs with fitness advantages has led to global 
‘sweeps’, with newly emerged VOCs displacing previously circulating 
variants. More notably, the growth of each VOC has led to a renewed 
surge in infections worldwide. This has prompted the need for near 
real-time genomic surveillance to inform early public health interven-
tions to control the rise of infections. In response to this need, thou-
sands of academic, non-academic and public health laboratories have 
been depositing sequences predominantly on the sharing platform 
of the GISAID Initiative4,13. The extraordinarily high sampling rate of 
infecting viruses provides a unique opportunity to track the evolution 
of the virus in near real-time. For example, in December 2021 alone, 
over a million new genomes were submitted to GISAID14. Traditionally, 
phylodynamic approaches have been employed to retrospectively 
characterize lineage dynamics during outbreaks of viruses such as 
Zika15–17, West Nile18 and Ebola19,20. Existing tools such as NextStrain21 
and frameworks such as Microreact22 primarily rely on a phylogeny to 
elucidate transmission chains and monitor the evolution of the virus. 

Genomic data workflow
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Fig. 1 | outbreak.info enables the exploration of genomic data across three 
dimensions. a, Growth rate of a lineage is a function of epidemiology and 
intrinsic biological properties of a lineage. Further, epidemiology varies over 
time and by geography, whereas intrinsic biological properties are determined 
by the mutations present in a given lineage. b, Genomic data are ingested from 
GISAID, processed using the custom-built data pipeline (Bjorn) and stored on 

a server that can be accessed via an API. The API is consumed by two clients: a 
JavaScript-based web client and an R package that provides programmatic access 
by authenticating against GISAID credentials. c, The web interface contains three 
tools that allow exploration of genomic data across three different dimensions: 
lineage/mutation, time and geography.
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Fig. 2 | Lineage and/or Mutation Tracker. a, Prevalence of VOCs in the United 
Kingdom from Sep 2020 to May 2022. The error bands show the 95% binomial 
proportion confidence interval calculated using Jeffrey’s interval. b, Search and 
filter options for Lineage/Variant of Concern tracker. c, Prevalence of S:Y145H+ 
S:A222V mutations across different lineages globally. d, Prevalence of BA.2 in the 
United Kingdom. The error bands show the 95% binomial proportion confidence 

interval calculated using Jeffrey’s interval. e, Mutation map showing the 
characteristic mutations of AY.4. f, Summary statistics of BA.2 lineage.  
g, Geographic distribution of the cumulative prevalence of BA.2 lineage  
over the last 60 d globally. h, Cumulative prevalence of BA.2 in each country  
over the last 60 d globally. i, Research articles and datasets related to BA.2.
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lineages/mutations. We use the Pango nomenclature to estimate the 
prevalence of SARS-CoV-2 lineages over time and at varying geographic 
scales. Using a phylogenetically-informed nomenclature allows us to 
determine genetic features such as the ‘characteristic mutations’ of 
a lineage without directly building a global phylogeny. By avoiding a 
global phylogeny, we can update our databases daily using the continu-
ously growing number of SARS-CoV-2 genomes. In addition, we closely 
track reports from health agencies such as Public Health England, CDC 
and WHO that designate VOCs/VOIs/VUMs based on epidemio logical 
analyses. In addition to genomic data, the server also ingests two other 
types of data: (1) epidemiological data curated by Johns Hopkins  
University31 and (2) public literature, clinical trial, protocol and dataset 
metadata from sources such as bioRxiv, medRxiv and LitCovid32. Here, 
we describe how each of these data sources is used collectively to assist 
in genomic surveillance.

The overall workflow of genomic data is shown in Fig. 1b. Genomic 
data are ingested from GISAID, processed via a custom-built data  
pipeline, Bjorn, and stored on a server that can be accessed via an 
application programming interface (API). We built two client-side 
applications, a web interface and an R package that consume this API 
(Fig. 1b). The web interface consists of three main tools focusing on 
different facets of the underlying genomic data: (1) Lineage and/or 
Mutation Tracker, (2) Location Tracker and (3) Lineage Comparison 

Tool. We designed an interface for each tool that focuses on one  
primary dimension of the genomic data with additional customiz-
ability of one or more secondary dimensions (Fig. 1c). The Lineage 
and/or Mutation Tracker focuses on a specific lineage, mutation 
or a combination of these. The Location Tracker focuses on a given  
location and provides a snapshot of currently circulating lineages. 
Finally, the Lineage Comparison Tool can be used to explore the preva-
lence of mutations across different lineages. In addition to the web 
interface, we built an R package that authenticates against GISAID 
credentials and allows programmatic access to the processed data 
for downstream analyses.

Lineage and/or Mutation Tracker
The ongoing SARS-CoV-2 pandemic has been punctuated by the emer-
gence of VOCs with fitness advantages over previously circulating vari-
ants, resulting in ‘waves’ of infections. Figure 2a shows the changing 
prevalence of the three most-dominant VOCs in the United Kingdom, 
but this phenomenon is observed globally with heterogeneity across 
geography. A fundamental part of genomic surveillance is to identify 
the emergence of such variants by closely tracking the growth of cir-
culating lineages. Given the geographic variation in epidemiological, 
social and economic factors, it is important to estimate variant preva-
lence at varying geographic scales. The Lineage/Mutation Tracker can 

Table 1 | Questions addressed by the Lineage and/or Mutation Tracker

Question Relevant visual elements

What is the prevalence of a set of mutations within 
different lineages?

Mutations such as S:N501Y, S:DEL69/70 and S:E484K have been shown to have functional impact on the 
phenotype exhibited by a lineage such as increased pathogenicity or immune evasion33,60,61. Furthermore, 
these mutations have been acquired independently by many lineages. Convergent evolution can be used as 
a metric to assess the importance of any advantage conferred on a lineage by a mutation. Hence, if a query 
contains a set of mutations (for example, S:E484K and S:N501Y), we estimate the prevalence of that set of 
mutations across all lineages globally (Fig. 2c).

What is the trend shown by the prevalence of a 
lineage and/or a set of mutations over time?

Tracking the growth rate of a lineage or a set of mutations over time is very important to inform public health 
interventions. We estimate the prevalence of a given query as a proportion of the total number of sequences 
collected on a given day at a given location. To convey the uncertainty in estimating the prevalence, we 
calculate binomial proportion confidence intervals using Jeffrey’s interval (Fig. 2d).

What are the ‘characteristic mutations’ of a lineage? The mutations that are characteristic of a lineage can be used to generate hypotheses about the phenotype 
exhibited by a lineage based on previous studies on the functional impact of mutations. This is especially 
important to assess any potential impact a lineage might have on therapeutics such as monoclonal 
antibody drugs. We define the ‘characteristic mutations’ of a lineage as those mutations found in at least 
75% of the genomes classified as the lineage. We determined the 75% threshold empirically by examining 
the frequency of prevalent mutations within a variant (Extended Data Fig. 1a). We found that this threshold 
effectively excluded any mutations that occurred at low prevalence and identified the defining mutations 
of a lineage. We verified this using a manual check against known defining mutations of existing lineages 
(Extended Data Fig. 1b). Further, when a new lineage is designated, we perform manual checks to ensure 
that this 75% threshold is working as expected. The characteristic mutations identified in this manner are 
displayed in a ‘mutation map’ (Fig. 2e).

What is the total number of sequences that belong 
to a lineage and/or a set of mutations?
In how many countries was a lineage and/or a set of 
mutations detected?
When was this lineage and/or a set of mutations 
first detected?

To assess how quickly a variant spread and the extent of the geographic spread, we show summary of 
relevant statistics such as the total number of sequences that match the query, the cumulative prevalence 
of these mutations, the first and last date a sequence matching the query was detected worldwide for a 
customizable set of locations (Fig. 2f).

What is the geographic prevalence of a lineage 
and/or a set of mutations?

Many lineages, including VOCs Beta and Gamma, show variation in growth rates across different locations. 
Hence, it is essential to be able to access the geographic distribution of a given lineage. To facilitate this, 
we show the cumulative prevalence of lineages over a flexible time window across the sub-administrative 
levels of a given location for a lineage/mutation query (Fig. 2g). Choropleths are useful visual elements to 
map geographic variation in prevalence but to further highlight the uncertainty in these estimates and to 
account for cognitive biases in evaluating locations with different land areas, we use a dot chart to show the 
uncertainty in the point estimate of prevalence over the a flexible time window and a bar chart to show the 
number of sequences used to calculate it (Fig. 2h). The flexible time window for the cumulative prevalence 
estimates (Fig. 2g,h) is set to the last 60 d by default but can be changed as required. These two charts can 
be sorted by the prevalence of the query or the total number of sequences that match the query. This allows 
the user to account for the effects of sampling bias on prevalence estimates.

What is the latest research available on this lineage 
and/or set of mutations?

With the growth of new variants over the pandemic, we have seen many studies that focus on important 
aspects of a lineage such as the ability to evade immune response and the impact on vaccine efficacy. To 
aid in the discoverability of preprints, publications, datasets and other resources, we show the entries that 
match a given lineage or mutation query from our up-to-date research library32 (Fig. 2i). The details of the 
Research Library have been described previously32.
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be used to dynamically query the temporal and geographic variation in 
the prevalence of a (1) VOC/VOI and its sublineages (for example, Delta 
and its sublineages); (2) a lineage (for example, B.1.1.7); (3) a lineage and 
one or more mutations (for example, B.1.1.7 with S:E484K); (4) a muta-
tion (for example, S:E484K); or (5) a group of mutations (for example, 
S:E484K and S:N501Y) (Fig. 2b). When a mutation is part of a query, we 
also generate and display a link to Aquaria33 so that users can visualize 
the amino acid site in the context of the three-dimensional structure 
of the relevant protein. In addition to customizing the lineages and 
mutations, users can specify various location scales, such as a country, 
state or county (or their local equivalents), to estimate the prevalence 
of a given lineage and/or mutations. To provide meaningful insights 
from these prevalence estimates, we designed an interface to address 
a specific set of questions listed in Table 1.

Location Tracker
Some variants of the virus have only been dominant in certain regions 
of the world. For example, the VOCs Beta and Gamma were dominant 
in South Africa10 and Brazil34, respectively. Similarly, B.1.621 (ref. 35) was 
only dominant in Columbia, A.2.5 was only dominant in Panama and 
B.1.177 exhibited a high growth rate only in European countries due to 
a resurgence of travel in the summer of 2020 (refs. 24,36). Factors such 
as the attack rate, population immunity due to previous infection or 
vaccination and social mobility vary by geographic region and have an 
impact on the growth rates exhibited by a given lineage. To account for 
such localized factors, it is important to have the ability to track the 
growth of lineages at different geographic scales. We built the Location 
Tracker on outbreak.info to facilitate the surveillance of SARS-CoV-2 
lineages at a country, state/province or county/city level. The Location 
Tracker provides a snapshot of circulating lineages with a focus on the 
last 60 d and allows users to compare the prevalence of a customizable 
set of lineages/mutations over time in that location. Furthermore, the 
tracker also integrates reported cases over time to provide insights on 
the impact of growth of various lineages on caseloads in the region. As 
with the Lineage/Mutation Tracker, we designed the user interface to 
answer a set of specific questions as shown in Table 2.

Case study: outbreak.info as a hypothesis-generation tool
As the pandemic has continued to progress, we have seen the emer-
gence of VOCs with fitness advantages that were able to outcom-
pete previously circulating lineages. As of May 2022, there has been 
one currently designated VOC (Omicron, B.1.1.529+ sublineages,  
indicated by *) and four previously designated VOCs: Alpha (B.1.1.7*), 
Beta (B.1.351*), Gamma (P.1*) and Delta (B.1.617.2*). Of these, Alpha, 
Beta and Gamma were estimated to have emerged between September 
and December 2020 (refs. 10,11,37) and were subsequently outcompeted 
globally by the Delta variant that was first detected in December 2020 
(ref. 38). The Omicron lineage, first detected in November 2021 (ref. 7), 
was able to outcompete Delta and grew much more rapidly relative 
to previous VOCs during their emergence (Fig. 4a). Where Delta and 
Omicron variants exhibited high growth rates with little variation glob-
ally, Alpha continued to circulate in low prevalence in Brazil and South 
Africa, where Gamma and Beta variants were dominant, respectively 
(Fig. 4b,c). Additionally, the prevalence of sublineages within Delta 
and Omicron variants varies geographically. The Location Tracker on 
outbreak.info can be used to track the growth of VOCs within a given 
location, thus facilitating the comparison of lineage growth rates 
across locations. The Location Tracker can also be used to track the 
relative prevalence of sublineages within these VOCs, shedding light 
on any geographic variation in these dynamics. Here, we examine 
trends in the prevalence of the five VOCs globally and highlight the 
geographic variation in growth rates of Alpha, Beta, Gamma, Delta 
and Omicron variants.

The earliest samples of the Alpha variant were sequenced in 
southern England in late September 2020 (ref. 37). There were multiple 

introductions of the lineage into the United States as early as late 
November26. The Alpha variant showed a transmission advantage of 
40–50% in the United States26, in line with observations in the United 
Kingdom and the Netherlands. In the United States, Alpha was able to 
outcompete previously circulating lineages and continued to increase 
in prevalence until the introduction of the Delta variant around April 
2021 (Fig. 4d). In contrast to the United States, the Alpha variant circu-
lated at very low prevalence in Brazil, whereas the Gamma variant 
remained dominant in the country11 until the introduction of the Delta 
variant around April 2021 (Fig. 4b). Similarly, in South Africa, the Beta 
variant continued to spread until the emergence of the Delta variant 
and the Alpha variant never became dominant (Fig. 4c). While the Beta 
and Gamma variants were able to outcompete Alpha in South Africa and 
Brazil, respectively, Gamma only reached a maximum prevalence of 8% 
in the United States in May 2020 and Beta circulated at a prevalence of 
<1% (Fig. 4d). The growth of a lineage is determined by epidemiological 
factors such as number of introductions, travel between locations and 
by intrinsic biological properties such as transmission advantage or 
immune evasion. Both Beta and Gamma variants show varying degrees 
of immune evasion39. Regions of Brazil had attack rates as high as 75% in 
October 2020 (ref. 40), indicating that immune evasion was the primary 
reason for the rapid growth of the P.1 lineage in Brazil. In contrast, 

Table 2 | Questions addressed by the Location Tracker

Question Relevant visual elements

What are the 
most prevalent 
lineages over the 
last 60 d?

To quickly provide a snapshot of the lineages currently 
circulating in a given location, we show a streamgraph 
of the prevalence of lineages over the last 60 d (Fig. 3a). 
To increase interpretability, we grouped lineages that 
are below 3% prevalence for at least 5 d over the last 
60 d into a separate category, ‘Other’. The prevalence 
over time can be skewed especially in recent days due to 
the lag between sample collection, sequencing and the 
deposition of sequence data. To convey this uncertainty, 
the total number of samples collected are shown in an 
inverted bar graph below the streamgraph. In addition, 
a stacked bar graph shows a snapshot of the cumulative 
prevalence of the lineages over the last 60 d (Fig. 3b). 
Additionally, the user can adjust this window to look at 
different time windows, for example 180 d.

What is the 
distribution of 
mutations across 
these lineages?

The Location Tracker shows a snapshot of currently 
circulating lineages which will help identify a newly 
emerging lineage that exhibits a high relative growth 
rate. Often in such cases, the mutations found in 
the lineage might provide preliminary evidence on 
phenotypes exhibited by the virus such as increased 
transmissibility or immune evasion. To facilitate this 
process, we show the prevalence of mutations that 
are present in the spike gene of at least 75% of the 
sequences of currently circulating lineages (Fig. 3c). 
A Lineage Comparison Tool is also available, which 
expands upon this functionality with customizable 
queries to add lineages based on the name, VOC/VOI 
classification, prevalence of mutations and prevalence 
within a location.

How does the 
prevalence of 
different lineages 
or mutations 
within this 
location change 
over time?

In addition to showing a snapshot of the lineages 
circulating over the last 60 d, we developed a 
component to show the temporal variation in the 
prevalence of a customizable set of lineages/mutations 
for a given location. This offers additional flexibility to 
dynamically select lineages or mutations of interest and 
compare their prevalence over time with a customizable 
time window (Fig. 3d).

How does 
the lineage 
prevalence over 
time correspond 
to the number 
of daily reported 
cases in this 
region?

The impact of lineage dynamics on the reported cases 
over time is of primary concern to public health. To 
accomplish this, we cross-linked the reported cases for 
each location using a standardized location identifier 
and this is shown in a line graph below the prevalence 
of a lineage (Fig. 3e). In addition, users can select a time 
range within the prevalence chart or the reported cases 
chart to compare trends over a shorter time span.
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states in the United States had an estimated attack rate between 0.1% 
and 16% in June 2020 (ref. 41). Given this difference in attack rates, we 
can hypothesize that the intrinsic transmission advantage of the Alpha 
variant was able to outcompete the advantage conferred by immune 
evasion of Gamma in the United States, but the opposite was true 
in Brazil and South Africa. In all three countries, the introduction of 
the Delta lineage displaced previously circulating Alpha, Beta and/or 
Gamma lineages in the summer of 2021.

The Delta variant of SARS-CoV-2 was first detected in Maharashtra,  
India in December 2020 (ref. 38), has been shown to be 40%–60%  
more transmissible than Alpha42,43 and causes a reduction in vaccine  
efficacy relative to previously circulating lineages44. Vaccination  
campaigns against COVID-19 started in December 2020 and despite 
the progress of these campaigns45, the Delta variant continued to 
cause a renewed surge in infections globally. The Delta variant report, 
which can be accessed directly on the landing page of the Lineage  
and/or Mutation Tracker, can be used to understand the dynam-
ics of its sublineages. Figure 4a shows the global prevalence of the  
Delta variant over time. This growth reflects the transmission  
advantage that Delta has over previously circulating lineages includ-
ing VOCs Alpha, Beta and Gamma. As the Delta variant continued to 
spread, its genetic diversity increased and as of May 2022, over 200 
sublineages of Delta have been designated46.

The Omicron variant was first detected in November 2021 by 
genomic surveillance teams in South Africa and Botswana. This variant  
was associated with a rapid resurgence of infections in Gauteng  
Province, South Africa and was designated a VOC by the WHO within 
3 d of uploading the first genome7. The variant grew in prevalence very 
rapidly: within 3 weeks, the variant was detected in 87 countries and as 
of May 2022, Omicron has a prevalence of over 95% globally (Fig. 4a). 
While increased transmissibility confers a bigger fitness advantage 
compared to immune evasion when population immunity is low, the 
opposite is true as population immunity increases either due to vac-
cination or previous infection47. The Omicron variant was found to 
have a fivefold higher chance of reinfection compared to Delta48 and 
Omicron infections presented with a higher viral load than wild type 
but still lower than Delta49. As viral load is one of the determinants 
of transmissibility, this indicates that Omicron is intrinsically not as 
transmissible as Delta, but it exhibits better immune evasion. This 
combination gave Omicron a large fitness advantage over Delta as 
evidenced by its rapid growth rate worldwide (Fig. 4a). The continued 
spread of the variant has resulted in the emergence of many subline-
ages and as of May 2022, over 100 sublineages of Omicron have been 
designated. Notably, there is considerable geographic variation in the 
relative prevalence of newly designated sublineages such as BA.2.12.1, 
BA.4 and BA.5. While BA.2 continues to be the dominant sublineage 
within Omicron in countries such as Denmark and the United Kingdom 
(Fig. 4e,f), we see the BA.2.12.1 sublineage slowly displacing BA.2 in 
the United States (Fig. 4g). In South Africa, sublineages BA.4 and BA.5 
have completely displaced the previously dominant BA.2 (Fig. 4h) and 
have led to another surge in reported cases (Fig. 3e). The three variants, 
BA.2.12.1, BA.4 and BA.5 have been shown to evade antibodies elicited 
by previous BA.1 infection in in vitro neutralization studies50,51. This 
observed escape was higher than what was observed for BA.2 (ref. 52), 
highlighting the possibility that these variants led to a renewed surge 
in infections as these variants continue to spread globally. While the 
growth of Alpha and Delta variants globally was driven primarily by 
higher intrinsic transmissibility, the growth of the new variants within 
Omicron seems to be driven primarily by enhanced immune evasion. 
The increasing prevalence of immunity due to vaccination or previous 
infection worldwide, further supports this hypothesis.

This case study illustrates how outbreak.info can be used 
to not only track and compare the prevalence of lineages across 
locations, but also to derive and support hypotheses regarding 
the complex interplay between epidemiology and the intrinsic 

phenotypic characteristics of emerging SARS-CoV-2 lineages as the virus  
continues to spread.

Discussion
The Omicron variant, first detected in late November 2021, has out-
competed Delta and as of May 2022, it is the dominant lineage glob-
ally; however, it is important to note that regardless of how prevalent 
previously circulating VOCs were, all five VOCs emerged independent 
of each other. While the current hypothesis for the emergence of VOCs 
is prolonged virus evolution in a chronically infected individual53, we 
still lack a thorough understanding of this process. Given the underly-
ing stochasticity of this process, predicting the emergence of a new 
VOC is not currently feasible. As a result, continued surveillance of 
all currently circulating lineages is of utmost importance to public 
health globally—particularly as SARS-CoV-2 continues to spread and 
evolve worldwide.

The global community has generated over 11 million genomes 
of SARS-CoV-2 as of May 2022, shared on platforms such as GISAID14. 
The availability of such a large volume of genomic data has led to the 
development of several applications that combine genomic data with 
associated datasets to track the evolution of variants and their proper-
ties such as immune evasion and transmission advantage. Databases 
such as the Stanford Coronavirus Antiviral & Resistance Database54 
rely on manual curation of publications to identify and extract relevant 
datasets. Applications such as CoVariants.org track the evolution of 
the virus by focusing on a specific set of VOCs/VOIs and key mutations. 
COG-UK Mutation Explorer55 on the other hand tracks the virus within 
a specific location. Most of these applications rely on varying degrees 
of manual and automated workflows.

In terms of the degree of automation and the generalized approach 
to tracking SARS-CoV-2 variants globally, the applications that are most 
comparable to outbreak.info include COVID-19 CG56, CoV-Spectrum57 
and BV-BRC SARS-CoV-2 Early Warning System58. While each of these 
applications has their own strengths which can complement each 
other, we developed outbreak.info to serve as a template for tracking 
the spread of any pathogen over varying geographic and temporal 
scales at scale, across the world, in near real-time. Our unique paradigm 
centralizes the computation of key statistics based on the analysis of 
disparate data streams.

We designed the server infrastructure of outbreak.info keep-
ing two goals in mind: scalability of the API as existing data sources 
increase in size and new data sources are incorporated and reusability 
of the computed data by providing programmatic access through an 
R package (Extended Data Fig. 2). We separated our data ingestion 
pipelines from the server-side application so that new data sources 
could be easily incorporated by instantiating a new instance of the same 
server-side database and API. This approach differs from other existing 
applications and enables us to quickly incorporate and link metadata 
across existing data and new modes of surveillance such as the CDC’s 
National Wastewater Surveillance System59. Furthermore, the easy dis-
semination of any computed data on outbreak.info via the R package 
enables registered GISAID users to not only recreate visualizations 
available on the web interface but to further interrogate and utilize the 
processed data for more sophisticated downstream analyses. Extensive 
documentation of the R package is available at https://outbreak-info.
github.io/R-outbreak-info/. To the best of our knowledge, we are the 
only application that has incorporated an authentication workflow 
to enable users to directly access and analyze the processed data. To 
maximize accessibility of these data, the web interface of outbreak.
info was designed to offer a high degree of customizability, allowing 
users to answer specific biological questions and use the platform as 
a hypothesis-generation tool.

The guiding principles for the web interface were interactivity via 
responsive user interface elements powered by a high-performance 
API and interpretability via intuitive visualization of data based on 
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Fig. 4 | Prevalence of VOCs Alpha, Beta, Gamma, Delta and Omicron lineages 
over time. a–d, Prevalence worldwide (a), in South Africa (b), in Brazil (c) and 
in the United States (d). Error bands in a–d show 95% binomial proportion 

confidence intervals calculated using Jeffrey’s interval. e–h, Lineages with a 
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discussions with researchers, epidemiologists and public health offi-
cials. Besides informal discussions we also conducted two usability 
tests to evaluate user experience and redesigned parts of the user 
interface based on the feedback we received (see Usability studies in 
Methods). This rigorous approach to designing the interface and the 
overarching guiding principles have enabled us to create an interface 
that can be effectively used by the general public in addition to public 
health officials, academic and non-academic researchers.

outbreak.info has been enabled by unprecedented global genomic 
sequencing efforts and we developed every element of the applica-
tion to fully leverage this capacity; however, genomic sampling varies 
globally with the vast majority of sequences coming from high income 
countries; even within well-sampled regions, there is geographic and 
temporal variation13. To communicate the increased uncertainty due to 
low sampling, we calculate confidence intervals of estimates wherever 
applicable, provide histograms of sampling density and mask data 
when there are very few data points available. Sampling strategies 
for sequencing could also bias the prevalence of a given variant. For 
example, samples that are prescreened for variants such as B.1.1.7 
(Alpha) or BA.1 (Omicron) that show S gene dropout on a widely used 
qPCR assay could artificially inflate the prevalence of these variants. 
Efforts to investigate specific outbreaks within a location or prefer-
entially sampling individuals based on their travel history could also 
bias prevalence estimates. The impact of such factors on prevalence 
estimates could be substantial especially when the variant has very few 
sequences and the prevalence of the variant is low; however, this bias 
decreases as more sequencing data are made available. We communi-
cate these limitations in interpreting our reports through a dedicated 
‘caveats’ page on the website and have warnings linking to this page in 
relevant sections throughout the interface (Extended Data Fig. 3a,b). 
Limited sequencing data can also impact the ‘characteristic mutations’ 
of a variant, identified using the 75% threshold. Oftentimes, when a 
new lineage is designated there are very few genomes assigned to it. In 
such cases, the 75% threshold might not be adequate to identify all the 
characteristic mutations due to many positions being masked using 
Ns or otherwise incomplete genomes. We highlight this limitation in 
the ‘methods’ page of our website and have a link to this page above 
the ‘mutation map’ in the interface (Extended Data Fig. 3c). Further, 
we also throw a warning regarding this limitation if a lineage has fewer 
than 1,000 sequences assigned to it (Extended Data Fig. 3d).

Since its launch, outbreak.info (https://outbreak.info/press) has 
been widely used not only by the scientific community but also as a 
source of information by a broader audience. On average, the web-
site received over 270,000 page views per month, of which 75% were 
unique visitors. The average amount of time spent by users on a page 
was around 1 min. The API received an average of over 3 million unique 
hits per month, which included any requests from the website itself. 
The Lineage and/or Mutation Tracker, Location Tracker and the Line-
age Comparison Tool accounted for 45%, 14% and 15% of overall traffic, 
respectively.

outbreak.info continues to provide a mechanism for research-
ers, epidemiologists and public health officials to easily track the 
growth of variants, across any number of locations. The platform, 
backed by robust infrastructure, allows users to quickly access key 
statistics for known VOCs, emerging variants and any combination 
of mutations without having to run any time-consuming analyses. 
While these statistics are useful to monitor the evolution of the virus, 
there exist several avenues to extend and improve outbreak.info as a 
platform to comprehensively monitor the evolution of the virus. First 
among these is to use existing statistics to calculate new quantities 
such as genetic divergence and the growth rate of emerging variants 
to aid in the early detection of VOCs and VOIs. The sparse availability 
of genomes especially for newly detected variants requires methods 
that can provide reliable confidence intervals in addition to point 
estimates of such quantities. Given that VOCs and VOIs of SARS-CoV-2 

were first detected in many different locations globally including 
the United Kingdom, Brazil, South Africa and India, it is important to 
develop or incorporate new methods that can scale across thousands 
of locations and millions of combinations of lineages and mutations. 
The second avenue to improve outbreak.info is to leverage our ability 
to incorporate new types of data that could be analyzed in conjunction 
with sequencing data sampled in clinical settings. Such data sources 
include wastewater surveillance, which has emerged as an accurate 
and cost-efficient method for surveillance and human mobility data 
that could be used to track the geographic spread of the virus. Finally, 
we aim to improve our API by adding the ability to construct complex 
queries. For instance, a query such as ‘CALCULATE prevalence FROM 
lineage:BA.1 NOT mutation:S:K417N AND location:USA’ would calculate 
prevalence of BA.1 genomes without the S:K417N mutation sampled 
within the United States. This would allow researchers to build queries 
in an easy and intuitive manner so they can focus on data exploration, 
hypothesis generation and complex downstream analyses. Beyond the 
SARS-CoV-2 pandemic, outbreak.info serves as a model for providing 
scalable and reusable metrics to track the spread of any pathogen 
during an outbreak via interactive and interpretable visualizations.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01769-3.
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Methods
Ingestion of genomic data
We built a data pipeline, Bjorn, to preprocess metadata and count 
mutations from a given set of genomes in a scalable manner on a daily 
basis (Extended Data Fig. 4). The pipeline consists of the following 
steps: (1) download SARS-CoV-2 genomes from the GISAID provision; 
(2) filter out records based on erroneous or incomplete genomes and 
associated metadata; (3) compare with cache to only process new and 
updated records; (4) divide sequences into chunks of 10,000 records 
(each chunk is subsequently processed in parallel using GNU parallel)62; 
(5) align these sequences using minimap2 v.2.24 (ref. 63); (6) convert the 
alignment into a FASTA file using gofasta v.1.1.0 (ref. 64); (7) count muta-
tions and deletions from this alignment; (8) standardize and filter the 
metadata: country, division, location, Pango lineage, date of collection 
and date of submission; and (9) combine results from all chunks and 
convert to a JSON Lines object. We standardized geographic identifiers 
using shapefiles from GADM (https://gadm.org/). The final JSON Lines 
object was loaded into an Elasticsearch v.1.7 index within the BioThings  
framework v.0.11.1 (ref. 65). The source code for Bjorn including a 
Docker container for easy deployment is available at https://github.
com/andersen-lab/bjorn.

To exclude records with incomplete or erroneous genomes and 
associated metadata in step (2), we use the following conditions:

•	 Length of the genome is less than 20,000 nucleotides or 
greater than 40,000 nucleotides.

•	 Greater than one-eighth of nucleotides in the genome are 
masked using Ns.

•	 The genome differs from the reference genome at more than 
50% of nucleotides.

•	 The genome has more than 500 insertions or deletions relative 
to the reference.

•	 The collection date is after the submission date.
•	 The submission date is in the future (beyond the current date).
•	 The collection date is before November 2019.
•	 The host is not human.
•	 The location string cannot be matched to any country in the 

GADM shapefiles.

Ingestion of epidemiological data
We built the EpiData pipeline to ingest reported global cases and deaths 
from Johns Hopkins University31. We used shapefiles from Natural 
Earth (https://www.naturalearthdata.com/) to standardize geographic 
identifiers and obtain populations for countries and states outside the 
United States. For the United States, we used the county-level shapefiles 
and population estimates from the 2019 population estimates by the 
Census Bureau to standardize geographic identifiers and get popula-
tion estimates. We standardized reported date formats and geographic 
identifiers across the two resources. The code for the EpiData pipeline 
is available at https://github.com/outbreak-info/biothings_covid19.

Calculation of confidence intervals on prevalence
Most estimates of prevalence on outbreak.info are binomial propor-
tions. We calculated 95% confidence intervals for these estimates using 
Jeffrey’s interval, the 2.5 and 97.5 quantiles of the β distribution 
β (x + 0.5,n − x + 0.5) where x is the number of successes and n is the 
number of trials.

Creation of outbreak.info API
To scale with the increasing size of existing data sources and the  
heterogeneity of newly emerging data sources, we used the BioThings 
framework65. The JSON outputs of our data pipelines are ingested by 
the BioThings framework and the processed data are stored in indi-
vidual Elasticsearch indices. A Tornado server is used to create API end-
points that leverage the search capabilities of Elasticsearch to perform 

complex aggregations of the underlying data. These API endpoints 
allow the client-side applications to query the underlying data within 
reasonable query times while accounting for the scale of the ingested 
data. The BioThings Hub maintains historical data by default, allowing 
us to roll back to previous data backups if issues are discovered with 
new data after they are deployed. The code for the server-side applica-
tion is available at https://github.com/outbreak-info/outbreak.api.

outbreak.info web application
The web application was built using Vue.js v.2.7.14 (https://vuejs.org/), 
a model–view–view model JavaScript framework that enables the 
two-way binding of user interface elements and the underlying data 
allowing the user interface to reflect any changes in underlying data 
and vice versa. The client-side application uses the high-performance 
API to interactively perform operations on the database. Custom-
ized data visualizations on the client were built using D3.js v.5.16.0 
(ref. 66), giving us the ability to develop novel and intuitive visual ele-
ments as part of the user interface. We designed these visualizations to 
answer specific questions of interest to epidemiologists, researchers 
and public health officials. We further added functionality to enable 
the one-click copy or download of every chart in the interface as a 
PNG or SVG. The code for the client-side application is available at  
https://github.com/outbreak-info/outbreak.info.

R package
We developed an R package for outbreak.info to allow researchers and 
other individuals to easily access the data via the API for downstream 
analyses and visualizations. The R package is composed of three parts: 
functions that allow the user to access genomic data, functions to 
access the epidemiological data and functions to access the Research 
Library metadata. They all consist of a base function that contains 
arguments for all possible parameters that can be used to query the 
API. While users can utilize this base function directly to access data, 
several wrapper functions are available that inherit the arguments from 
the base function in addition to prespecified parameters to simplify the 
process of querying the API. For example, while getGenomicData() can 
be used directly to access data regarding the daily global prevalence of 
a specified lineage, doing so would require a user to be familiar with the 
name of the end point as specified in the API URL (in this case, global 
prevalence). Instead, the user can access these data with the more 
intuitively named getPrevalence(). Therefore, these wrapper functions 
allow users to easily and quickly obtain the data they need. The R pack-
age also contains an authenticateUser() function that allows users to 
authenticate against their GISAID credentials and access computed 
statistics from the primary genomic data provided by GISAID.

In addition, as the API queries location by ISO3 code, rather than 
by location name, two functions have been created that allow users to 
forgo the step of searching for the ISO3 code themselves: getISO3Code()  
and getLocationIdGenomic(). The latter function uses the genomics API 
end point to obtain the ISO3 code for a given location. The ISO3 code 
can be obtained with either a full or incomplete location name; in the 
latter case, the user will be provided a list of matching locations and 
must specify the location they are interested in. This function is embed-
ded in the parent getGenomicData() function and is therefore inherited 
in all wrapper functions. Therefore, searching for data by location in 
the R package replicates the experience on the client-side web appli-
cation. Documentation is available at https://outbreak-info.github.
io/R-outbreak-info with vignettes located at https://outbreak-info.
github.io/R-outbreak-info/articles/index.html. The R package can 
be downloaded and installed using the remotes package function: 
install_github(‘outbreak-info/R-outbreak-info’).

Usability studies
Two remote moderated usability tests of outbreak.info were con-
ducted between 4 March 2021 and 2 April 2021 over Zoom. These 
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tests explored the ease by which researchers could use outbreak.
info’s genomic tools to find information about SARS-CoV-2 lineages 
and mutations, including prevalence data, mutation characteristics 
and publications. In the first test, five biomedical researchers were 
recruited to complete a series of seven tasks using the Lineage and/or  
Mutation Tracker:

1. Please export a visualization of the average daily prevalence of 
the B.1.1.7 lineage in the United Kingdom.

2. Please use outbreak.info to find publications about the B.1.1.7 
lineage.

3. Please tell me which lineages are VOCs and how to distinguish 
the difference between VOCs and VOIs using the website.

4. Please use outbreak.info to find which lineages contain the 
E484K mutation.

5. Please use outbreak.info to find the total number of E484K 
sequences that have been detected in New York state.

6. Please use outbreak.info to find the global prevalence of the P.2 
lineage.

7. Please use outbreak.info to find the global prevalence of the 
S:D614G mutation.

In the second test, five biomedical researchers were recruited to 
complete a series of five tasks using the location reports:

1. Please find the prevalence of lineages in California.  
Subsequently, please find the prevalence of specific  
mutations (for example L452R) for the most common  
lineages in California.

2. Please compare the prevalence of these lineages/mutations in 
California over time: B.1.1.7, B.1.427, B.1.429 and S:L452R.

3. Please find cumulative B.1.429 prevalence by county in 
California.

4. Please find the global prevalence of the B.1.526 lineage with the 
S:E484K mutation.

5. Please find all publications related to B.1.1.7.

For both tests, five post-test questions were asked:

1. Overall, please rate how easy or difficult it is to use this app on a 
scale of 1–5, where 1 is very difficult and 5 is very easy.

2. How likely are you to continue using the Mutation Situation 
Reports to regularly access data or find information about the 
variants, on a scale of 1–5 where 1 is very unlikely and 5 is very 
likely?

3. What do you like most about the Mutation Situation Reports?
4. What would you improve about the app? Or what would you 

add to the app?
5. How would you compare this site to other sites you’ve used to 

find information about the variants?

The following metrics were recorded:

1. Ease and satisfaction about each task (five-point Likert scale).
2. Time on each task.
3. Number of successful task completions and errors.
4. Overall ease and satisfaction (five-point Likert scale).
5. Likelihood to use (five-point Likert scale).
6. Suggestions for improvement (likes, dislikes and 

recommendations).
7. Error-free rate.
8. Noted observations about the users’ process.

The successful completion rate for both tests was 100% but users 
made non-critical errors and the error-free rate for the first and second 
tests was 10% and 20%, respectively. The average amount of time spent 
on tasks was a little over 1 min. Users rated the overall ease of using the 
interface with an average score of 80% and all users responded that they 
were very likely to continue using the site. Users specifically liked the 

site’s interactivity, the visualizations and the wide range of features 
that could be found in one place.

Based on these usability tests, the following changes to the inter-
face were made:

1. New descriptions of report categories were added, as well as 
the option to filter VOCs and VOIs.

2. The user interface to select mutations and lineage + mutation 
combinations was streamlined.

3. A second search bar for finding location reports was added to 
the home page.

4. New options were added to the navigation bar at the top of the 
interface.

5. An FAQs page was created.
6. A new site description and introductory video were added.
7. Several other design changes to the home page to highlight 

major features.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All SARS-CoV-2 virus sequence data were provided by the GISAID 
Global Data Science Initiative and are available at https://gisaid.org/.  
Additionally, the summarized variant prevalence data can be accessed 
through an R package (https://outbreak-info.github.io/R-outbreak-info/)  
using freely available GISAID credentials.

Code availability
All code used to generate the outbreak.info genomic reports is freely 
available on GitHub (https://github.com/outbreak-info) under open 
source licenses. This includes:
•	outbreak.info	web	application:	the	code	powering	the	outbreak.
info front-end (https://github.com/outbreak-info/outbreak.info). 
The version of the code used in this paper is available at https://doi.
org/10.5281/zenodo.7343497.
•	outbreak.info	R	package:	R	package	to	access	all	the	genomics	and	
epidemiology data and Research Library metadata compiled and 
standardized on outbreak.info (https://github.com/outbreak-inf
o/R-outbreak-info). The version of the code used in this paper is avail-
able at https://doi.org/10.5281/zenodo.7343501.
•	Bjorn:	pipeline	for	SARS-CoV-2	mutation	counting,	lineage	classifica-
tion and other processing (https://github.com/andersen-lab/bjorn). 
The version of the code used in this paper is available at https://doi.
org/10.5281/zenodo.7343950.
•	api.outbreak.info:	the	code	to	create	the	API	to	access	Research	
Library metadata and cases and deaths data is available at api.outbreak.
info (https://github.com/outbreak-info/outbreak.api). The version 
of the code used in this paper is available at https://doi.org/10.5281/
zenodo.7343503.
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Extended Data Fig. 1 | Empirical basis for selecting 75% as a threshold to 
identify ‘characteristic mutations’ of a lineage. (a) The frequency of mutations 
above 5% prevalence in P.1 (Gamma), BA.1 (Omicron), B.1.617.2 (Delta), B.1.351 

(Beta), and B.1.1.7 (Alpha) variants. (b) Mutations present in >= 75% of all 
sequences in P.1 (Gamma), BA.1 (Omicron), B.1.617.2 (Delta), B.1.351 (Beta), and 
B.1.1.7 (Alpha) variants.
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Extended Data Fig. 2 | Software infrastructure of outbreak.info. The infrastructure can be broadly divided into (1) Data ingestion pipelines, (2) Server-side hosting 
the database and API server, and (3) Client-side applications that use the API from the server.
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Extended Data Fig. 3 | Examples of warnings to ensure users pay attention 
to possible biases while interpreting visualizations on the web interface. 
(a) Link (‘Read about biases’) to the caveats page on the web interface in the 
summary box section of the lineage/mutation tracker. (b) Link (‘Estimates are 
biased by sampling (read more)’) to the caveats page above the streamgraph on 

the web interface of the location tracker. (c) Link (‘read more’) to the methods 
page on the web interface about how characteristic mutations are identified 
and associated limitations. (d) Warning about the limitations of identifying 
characteristic mutations when less than 1000 sequences are assigned to a 
lineage.
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Extended Data Fig. 4 | Flowchart describing the steps in Bjorn. The genomic 
data and associated metadata from GISAID undergo preprocessing and filtering 
to exclude erroneous or incomplete records (depicted in blue). The preprocessed 
information is then compressed and compared to prior cached versions to 
determine new or updated records (depicted in black). These new genomes 
are aligned and mutations are counted, followed by lineage identification. 

The locations and dates in the new metadata are also normalized to enable 
standardized query access. These processing steps are executed in parallel by 
splitting the data into chunks of 10 Mb (depicted in purple). The processed data 
from the new records are combined with the processed data from the unaltered 
records (depicted in brown), following which they are stored in an Elasticsearch 
database.
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