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Identification of transcription factors responsible for dysregulated
networks in human osteoarthritis cartilage by global gene expression
analysis
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Objective: Osteoarthritis (OA) is the most prevalent joint disease. As disease-modifying therapies are not
available, novel therapeutic targets need to be discovered and prioritized for their importance in
mediating the abnormal phenotype of cells in OA-affected joints. Here, we generated a genome-wide
molecular profile of OA to elucidate regulatory mechanisms of OA pathogenesis and to identify
possible therapeutic targets using integrative analysis of mRNA-sequencing data obtained from human
knee cartilage.
Design: RNA-sequencing (RNA-seq) was performed on 18 normal and 20 OA human knee cartilage tis-
sues. RNA-seq datasets were analysed to identify genes, pathways and regulatory networks that were
dysregulated in OA.
Results: RNA-seq data analysis revealed 1332 differentially expressed (DE) genes between OA and non-
OA samples, including known and novel transcription factors (TFs). Pathway analysis identified 15
significantly perturbed pathways in OA with ECM-related, PI3K-Akt, HIF-1, FoxO and circadian rhythm
pathways being the most significantly dysregulated. We selected DE TFs that are enriched for regulating
DE genes in OA and prioritized these TFs by creating a cartilage-specific interaction subnetwork. This
analysis revealed eight TFs, including JUN, Early growth response (EGR)1, JUND, FOSL2, MYC, KLF4, RELA,
and FOS that both target large numbers of dysregulated genes in OA and are themselves suppressed in
OA.
Conclusions: We identified a novel subnetwork of dysregulated TFs that represent new mediators of
abnormal gene expression and promising therapeutic targets in OA.

© 2018 Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
Introduction

Osteoarthritis (OA) is the most prevalent joint disease and a
leading cause of disability in the elderly1. In established disease, all
joint tissues are affected2 but the articular cartilage appears to be
the most vulnerable to traumatic injury and aging-related changes
that initiate the disease process3,4.
: M.K. Lotz, Department of
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There have been several important recent advances, such as
genome wide association studies (GWAS), candidate gene and
global gene expression analyses that have led to an improved un-
derstanding of OA pathogenesis5,6. However, the small number of
candidate genes identified by GWAS had relatively low Odds ratio
(OR)s5,6. Genome wide analyses of expression of RNAs offer po-
tential for discovering new mechanisms and therapeutic targets.
Only a limited number of genome wide expression analyses have
been performed on human OA cartilage7e14. A small number of
studies were performed in OA mouse models15e19, comparing rat
OA vs normal chondrocytes20, or articular cartilage from a porcine
model of OA21.

Here we have performed RNA-seq to identify differentially
expressed (DE) genes between normal and OA articular cartilage.
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We created a molecular profile of the OA transcriptome and per-
formed functional enrichment analyses to elucidate perturbed
molecular functions and pathways in OA. We identified DE tran-
scription factors (TFs) through transcription factor binding site
analysis and prioritized these using network analysis. Finally, we
developed a high-resolution molecular profile of OA and elucidated
a novel regulatory network of OA pathogenesis.

Methods

Cartilage donors

Normal human knee cartilage tissues were procured by tissue
banks (approved by Scripps Institutional Review Board) from five
female and 13 male (age 18e61, mean 38) without history of joint
disease or trauma and processed within 24e48 h post mortem.
Full thickness cartilage was harvested for RNA isolation from
identical locations on the weightbearing regions on medial and
lateral femoral condyles, and adjacent tissue sections were har-
vested for histology to verify the cartilage integrity. OA-affected
cartilage was harvested from the tissue removed during knee
replacement surgery from 12 female and eight male donors (age
52e82, mean 66). Body mass indices between the normal
(BMI ¼ 32.4 ± 8.0) and OA (BMI ¼ 30.7 ± 8.1) were not signifi-
cantly (P ¼ 0.506) different.

Tissue processing, RNA and DNA isolation

Cartilage was stored at �20�C in Allprotect Tissue Reagent
(Qiagen, Valencia, CA) immediately after harvest until RNA
extraction. For RNA isolation, a minimum of 150 mg of cartilage
(dry weight) was pulverized using a 6770 Freezer/Mill Cryogenic
Grinder (SPEX SamplePrep, Metuchen, NJ), and homogenized in
Qiazol Lysis Reagent (Qiagen, Valencia, CA) at a concentration of
25 mg tissue sample per 700 ml Qiazol. To remove proteins and
cellular debris, a initial phenol-chloroform extraction was per-
formed. Briefly, samples were mixed with 0.2 volumes of chloro-
form, incubated for 5 min in ice, and centrifuged a t 14,000 rpm for
15 min at 4�C. The aqueous phase was collected, mixed with one
volume of Qiazol and incubated for 30 min in ice. Then, samples
were mixed with one volume of 100% ethanol, loaded into a
mRNeasy Mini kit column (Qiagen) and digested on-column with
DNAse following manufacturer instructions. RNA was eluted in
15 ml of RNase-free water. RNA purity was assessed using NanoDrop
(ND-1000, Thermo Scientific, Wilmington, differentially expressed
(DE) genes) and RNA integrity number (RIN) was calculated using a
2100 Bioanalyzer (Agilent, Santa Clara, CA). Average RIN numbers
were 6.08 ± 0.95.

Library preparation and sequencing

RNA samples from 18 normal and 20 OA cartilage donors were
sequenced using 150 ng of total RNA as input. Sequencing mRNA
libraries were prepared using the Encore Complete RNA-Seq DR
Multiplex System 1e8 and 9e16 (NuGen, San Carlos, CA) with 16
unique indexed adapters (L2V6DR-BC2-L2V6DR-BC16). Two lanes
of an Illumina HiSeq 2000 instrument were used to generate a total
of 8e30 million 100bp reads.

The Illumina Genome Analyzer Pipeline Software (Casava v1.8.2)
was used to convert the original image data generated by the
sequencing machine into sequence data via base calling in order to
generate fastq files and to demultiplex the samples. We performed
a per base sequence quality check using the software FastQC
(v0.10.1) (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) prior to read mapping. Raw RNAseq reads were aligned
to the human genome (hg19) using the STAR aligner22. The number
of reads sequenced per sample ranged from 19 to 24 million reads,
which should be sufficient for gene level quantification, but only
2e12 million reads per sample mapped to protein coding genes. To
account for this issue, we applied high stringency the filtering of
lowly expressed genes (log counts per million (CPM) > 3) so that
only the differential expression analysis included only genes that
were expressed in high enough abundances to be confident in their
relative gene expression values.

Global gene expression profiling (read mapping, quantification and
differential expression)

HTSeq was used to count the number of reads unambiguously
overlapping each gene, where each gene was considered to be the
union of its exons23 with UCSC RefSeq hg19 annotation (Release
57). Sample normalization factors were computed using the EdgeR
TMM method24. Unless otherwise stated, all CPM and log2CPM
values were computed using these normalization factors. Only
genes with counts with log2CPM greater than 3.0 in one or more
samples were considered expressed, resulting in a gene list of
13,102 informative transcripts. We converted the gene symbols to
Entrez IDs using the annotations in the mygene.info package25. Of
the 13,102 genes, 635 gene symbols did not have an associated
Entrez ID and were discarded from this study. The resulting genes
with Entrez IDs correspond to the set of ‘background or detected
genes’ consisting of 12,463 genes. Differential expression analysis
was performed with limma-voom26 with the design
~0 þ condition. Genes with an adjusted P-value of <0.05 (based on
the moderated t-statistic using the Benjamini-Hochberg (BH)
method to control the false discovery rate27) and a jlog2FCj >1 were
considered significantly DE.

Gene ontology classification of DE genes and pathway analysis

Assignment of functional categories was based on the Gene
Ontology (GO) categories ‘Biological process’, ‘Molecular function’
and ‘Cellular component’. Enrichment analysis of GO categories was
performed in R (version 3.2.1; http://www.r-project.org) using the
‘weight01’ method from the Bioconductor topGO (v. 1.5.1) package
(32). Node size was set to 10, and Fisher's exact test was used for
assessing GO term significance. Adjusted P-values were computed
from the P-values using the BH method27. Overrepresentation of
functional categories was calculated for DE genes as compared with
the 12,463 ‘background’ genes, and significant GO terms were
identified as those having BH adjusted P-value <0.05.

Overrepresentation analysis in WebGestalt v 201728 was used to
identify significantly enriched KEGG29 pathways using DE genes as
input and setting the ‘background genes’ to all 12,463 genes
expressed in our RNA-seq dataset.

Transcription factor enrichment analysis

TFs were identified by comparing the 12,463 cartilage expressed
genes with all genes classified under the GO term ‘transcription
factor activity, sequence-specific DNA binding’ (GO:0003700)30. To
identify which TFs target DE genes, we used the oPOSSUM single
site analysis31 tool to perform a Fisher's test for overrepresentation
of 478 JASPAR position weight matrixes (PWM) profiles in DE gene
promoters (defined as 1 kb upstream of the starting transcription
site). We used a cut-off of 0.4 and matrix score threshold of 85%.
Promoters were defined as the 1 kb region upstream of TSS. For
enrichment analysis, a likelihood ratio given by the OR was
computed such that log2 (Odds Ratio) ¼ log2 and Fisher's exact test
was used to test for a significant association between DE status and
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TF binding. Enriched TFs having and adjusted P-value<0.1 using the
BH-method were considered significant.

Network analysis

We performed a network analysis using the HumanBase tissue-
specific cartilage gene interaction network25,26. The network that
we generated with the cartilage data was based on several data
types that constituted the underlying network, including experi-
mentally produced proteineprotein interactions (http://hb.
flatironinstitute.org/data), and the interaction confidence is the
edge weight assigned from the algorithm used to create this com-
pendium network. We seeded the network with TFs that were DE
and enriched for binding sites in the promoter region of DE genes.
We restricted the data types of the network edges to interaction, TF
binding, gene GSEA microRNA targets and GSEA perturbations. We
set the maximum number of genes in the network to 50 genes,
prioritized by uniqueness to the query genes with a minimum
interaction confidence of 0.17, a setting at which all seed genes
included at least one edge in the network. This resulted in 64 genes
in the subnetwork, 62 of which were considered expressed in this
study, so downstream analyses were conducted on the 62 node
network. Overrepresentation analysis in WebGestalt v 201728 was
used to identify significantly enriched KEGG pathways in the 62
gene subnetwork, setting the background gene list to those 12,463
tested in the differential expression analysis. The edges in the
network were filtered to high confidence edges (weight > 0.35) and
the degree of each gene was calculated as the number of connec-
tions to other nodes. Cytoscape v 3.6.032 was used to visualize the
network and annotate genes within enriched pathways in the
network.

Data access

The data have been deposited into Gene Expression Omnibus
(GEO), accession number GSE114007.

Results

Outline of data analysis

The objective of this study was to use differentially expressed
genes (DE) OA vs normal cartilage (n ¼ 1332) as obtained from
RNA-seq for the general purpose of identifying dysregulated genes
and pathways (Fig. 1). The subsequent analyses focused on TFs, to
prioritize them by their importance as regulators of the abnormal
transcriptome in OA and by their potential as OA therapeutic tar-
gets. We identified 14 TFs that were both DE (n ¼ 93) and signifi-
cantly enriched for binding to the promoters of DE genes (n ¼ 44).
Network analysis was performed by seeding a tissue-specific
cartilage gene interaction network with the 14 TFs to further pri-
oritize them for their importance in contributing to the abnormal
OA transcriptome.
Fig. 1. Overview of th
Transcriptome landscape of OA reveals dysregulated extracellular
matrix metabolism, cell proliferation and differentiation

RNA-seq analysis was performed on human knee articular
cartilage isolated from normal (n ¼ 18) and OA (n ¼ 20) donors.
Thus, there were 38 unique subjects (statistically independent),
without repeated measures. In the 38 samples, 13,102 transcripts
were confidently expressed in at least one sample. For the differ-
ential expression analysis and downstream analyses, we used
12,463 of the 13,102 transcripts mapping to unique Entrez IDs. A
multidimensional scaling (MDS) plot reveals distinct clustering of
OA and normal samples [Fig. 2(A)].

A total of 1332 genes (Supplemental Table 1) were DE between
OA and normal human cartilage (adjusted P value < 0.05 and
jlog2FoldChangej>1). This set of 1332 DE genes was used in all
subsequent analyses.

Unsupervised hierarchical analysis of the significantly DE genes
stratifies normal and OA samples into two clusters, as expected
[Fig. 2(B)]. Among all DE genes, 630 genes were upregulated and
702 downregulated in OA with a range of differential expression
between�4.8 and 6.8 log2FC [Fig. 2(C)]. The genes with the highest
fold change in OA cartilage include POSTN, COL1A1, and TNFSF15,
and the genes with the lowest fold change were ADM, DDIT4, and
DUSP2 [Fig. 2(C)]. Several genes known to be involved in articular
cartilage homeostasis and OA pathology were also DE33,34. Extra-
cellular proteases from the ADAMTS and MMP families that
included ADAMTS2, ADAMTS5, ADAMTS7, ADAMTS14, MMP2,
MMP11, MMP13, and MMP19 were upregulated in OA cartilage. In
addition, sixteen genes encoding collagens were also upregulated
in OA samples and included COL2A1 and COL10A1. On the other
hand, normal cartilage samples had significantly higher expression
of genes involved in resistance to cellular stress such as DDIT4,
SESN2, GADD45A, GADD45B, and GPX3.

To assess the overarching function of genes DE between normal
and OA cartilage, gene set overrepresentation analyses were per-
formed using GO and KEGG databases (Supplemental Table 2). GO
term analysis indicated an enrichment for DE genes encoding
proteins located in the extracellular space and the cell membrane
[Fig. 2(D)]. DE genes were also enriched for processes involved in
ECM metabolism, cellecell interaction and intracellular signaling
pathways such as G-protein coupled receptor and cAMP signaling
pathways. Pathway analysis revealed 15 significantly dysregulated
pathways in OA [Fig. 2(E)]. The top pathwayswere protein digestion
and absorption, neuroactive ligandereceptor interaction and
complement and coagulation cascades. Other dysregulated path-
ways previously linked to OA were PI3K-Akt, FoxO, HIF-1 and
Circadian rhythm pathways35,36.

Suppressed transcription factors and their impact on OA gene
expression patterns

To identify TFs that may contribute to the abnormal tran-
scriptome landscape in OA cartilage, an integrative analysis was
e data analysis.
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Fig. 2. Transcriptomic landscape of normal and OA knee articular cartilage. A) Multidimensional scaling (MDS) plot of gene expression (lcpm) in normal (blue) and OA articular
cartilage samples (red) reveals strong clustering of samples by phenotype. B) Unsupervised hierarchical clustering of normal and OA articular cartilage samples based on the
expression levels of the top 1000 differentially expressed (DE) genes ranked by adjusted P-value. C) Volcano plot representation of gene expression analysis in normal and OA
articular cartilage samples highlighting the most DE genes. D) Bar plot representing top results of gene ontology (GO) enrichment analysis of DE genes between normal and OA
articular cartilage samples. E) Bar plot representing all 15 significantly enriched KEGG pathways in DE genes between normal and OA articular cartilage samples.
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performed using two complementary approaches. First, the 12,463
cartilage expressed genes were compared with all genes classified
under the GO term ‘transcription factor activity, sequence-specific
DNA binding’ (GO:0003700)30 to identify TFs expressed in carti-
lage, which resulted in 865 genes (Supplemental Table 3). Of the
865 TFs, 93 were DE, with 76 being downregulated and 17 upre-
gulated in OA cartilage (Supplemental Table 4). Among this large
number of TFs with reduced expression in OA was the master
regulator of chondrogenesis SOX937. In addition, seven members of
the Krüppel-like family of transcription factors (KLF), all three
members of the Nur (nuclear receptor subfamily 4) family of
orphan nuclear receptors, and two members of the Early growth
response (EGR) family had significantly lower expression in OA.
Comparison with previous studies that analyzed the transcriptome
of normal and OA human cartilage8,14 revealed substantial overlap
between DE TFs (48/93 vs Soul et al.14, and 23/93 vs Karlsson et al.8)
and high concordance in the direction of the changes (44/48 vs Soul
et al.14, and 17/23 vs Karlsson et al.8).

As a complementary approach, the 1332 DE genes were
analyzed using the oPOSSUM single site analysis31 tool and the
JASPAR38 database to identify TFs enriched for binding sites in the
promoter regions of these DE genes. This analysis identified 44 TFs
that were significantly enriched (Supplementary Table 5) with
JDP2, NFYA, RELA, SP1 and KLF4 exhibiting the highest enrichment.
Integration of both analyses delineated a subset of 14 TFs that were
DE and also enriched for binding sites in the promoter regions of DE
genes [Fig. 3(A)]. Surprisingly, all 14 TFs had significantly lower
expression in OA than in normal cartilage [Fig. 3(B)]. The DE TFs
that targeted the largest number of DE genes were KLF4, KLF5,
TBX4, TBX5 and EGR1 [Fig. 3(C)].
Network analysis reveals master regulators and key molecular
mechanisms of OA pathogenesis

To identify subsets of genes with functional enrichment for OA,
we performed a network analysis using the HumanBase tissue-
specific cartilage gene interaction network, which is a genome-
scale protein function and interaction map of human tissues
derived from integrating data sets from thousands of experi-
ments39,40. We seeded the network with the 14 TFs that were DE
and enriched for binding sites in the promoter region of DE genes.
We included 50 nearest neighbors of these genes prioritized by
uniqueness to the query genes with a minimum interaction confi-
dence of 0.17, a setting at which all seed genes included at least one
edge in the network. This resulted in a subnetwork of 64 genes, 44
of which were DE in our RNA-seq dataset and 62 of which were
considered expressed in cartilage [Fig. 4(A); Supplemental Table 6[.
Most of the genes in the subnetwork were downregulated in OA
and only three were upregulated (SERPINE1, IL11, and ARL4C),
indicating that this subnetwork is suppressed in OA cartilage.

To determine which specific processes are regulated by this
subnetwork, we performed overrepresentation analysis of KEGG
pathways and identified 40 significantly enriched pathways
including HIF-1, NF-kB, TGF-b, FoxO and Wnt signaling pathways
(Supplemental Table 7). The subnetwork analysis expanded the TF
enrichment analysis to reveal additional dysregulated pathways
involved in OA pathogenesis. The pathways that were enriched in
this subnetwork analysis and also in the prior pathway analysis
based on the 1332 DE genes (Fig. 2) included HIF-1 signaling,
pathways in cancer and FoxO signaling [Fig. 4(B)]. This analysis
highlights that these pathways are both focal to OA pathogenesis



Fig. 3. Transcription factor analysis. A) Overlap between DE transcription factors (TFs) and TFs enriched for binding sites in the promoter region of DE genes in normal and OA
articular cartilage results in 14 diferentially expressed genes (DE) enriched TFs. B) Heatmap of normal and OA articular cartilage samples based on the expression of 14 DE enriched
TFs. C) Top five DE TFs with highest percentage of target genes that are DE in normal and OA articular cartilage.

Fig. 4. Network-based prioritization of DE genes in OA. A) Network diagram of the 64 gene subnetwork from the HumanBase cartilage-specific network seeded with the 14 DE
enriched TFs. Node shape represented by diamonds represent the 14 DE enriched TFs, node color indicates significantly up- (red) or down- (blue) regulated in OA vs Normal
articular cartilage and node size corresponds to the degree (larger nodes have more connections to other nodes). Edges not drawn between nodes to aid in visualization of the
membership of each gene within significantly enriched pathways, labeled with text and highlighted by background color. B) Unsupervised hierarchical clustering of normal and OA
articular cartilage samples based on the expression levels of DE genes that belong to the HIF-1 signaling pathway, pathways cancer, and FoxO signaling pathway. C) Ranking of genes
in the network based on their degree. DE genes are marked with an asterisk. TFs that are DE and enriched for binding to DE genes are highlighted in red.
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and that these prioritized TFs play a central role in their dysregu-
lation. Interestingly, most of the genes from the HIF-1 and FoxO
signaling pathways were downregulated in OA cartilage [Fig. 4(B)].

To further prioritize DE genes between OA and normal cartilage
and identify targets for further study, the edges in the network
were filtered to high confidence edges (weight > 0.35) and the
degree of each genewas calculated as the number of connections to
other nodes [Fig. 4(C)]. This resulted in a ranked list where JUN and
EGR1 were the genes with the highest number of connections (45
and 32 connections, respectively). In addition to JUN and EGR1, the
top 25 highest degree genes included six TFs what also were DE in
OA and enriched for targeting DE genes (JUND, FOSL2, MYC, KLF4,
RELA, FOS). These analyses therefore suggest that these eight TFs
might constitute a key transcriptional network that could drive the
dysregulated transcriptomic landscape of OA cartilage. In particular,
KLF4 and EGR1 are the TFs that target a larger number of DE genes
[Fig. 3(C)] and may thus represent high priority targets for thera-
peutic interventions.

Discussion

This study described the transcriptomic landscape of normal
and OA cartilage. Unbiased analyses of these datasets were
performed to identify critical regulators of abnormal gene expres-
sion changes in OA with the objective to prioritize therapeutic
targets. We identified a subnetwork of dysregulated TF that may
largely contribute to the abnormal gene expression pattern in OA.

The data presented here confirms and expands previous find-
ings from genome-wide gene expression analyses of normal and OA
cartilage using RNA-seq13,14,21 and DNA arrays7e10. A common
finding of these studies in human cartilage and also in animal
models of experimental OA15e19 is a differential expression of genes
involved in ECM metabolism. Our data analysis showed increased
expression of ECM components (COL10A1, COL13A1, COL15A1,
COL1A2) and proteases (MMP13, ADAMTS5) which is suggestive of
active remodeling of ECM during OA pathogenesis. In addition,
genes involved in activation of the complement cascade were also
dysregulated in our study in agreement with previous reports13,14,
thus strengthening the notion that complement factors may play a
significant role in OA pathogenesis. On the other hand, our data
analysis did not reveal abnormal expression of pathways previously
reported to be involved in OA pathophysiology such as TGF-b/WNT
signaling, inflammation or angiogenesis14,18.

Functional enrichment analyses showed that DE genes were also
involved in pathways recently linked to the maintenance of artic-
ular cartilage homeostasis, namely PI3K-Akt, FoxO, HIF-1 and
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circadian rhythm signaling pathways. PI3K-Akt signaling pathway
is involved in cartilage ECM degradation, modulation of autophagy
and cell death41. Involvement of the PI3K-Akt signaling pathway in
OA pathogenesis has been observed in hip OA10 and also in knee OA
cartilage when comparing unaffected and affected regions of the
joint13. FoxO TFs are negative regulators of the PI3K-Akt pathway
that have been recently reported to be decreased in OA and aged
cartilage and to promote resistance to cellular stress in chon-
drocytes42,43. HIF-1a is the central regulator of cellular responses to
hypoxia and has been shown to promote chondrocyte differentia-
tion and survival35. Moreover, transcriptomic differences in genes
involved on cellular responses to hypoxia have been reported in
hip10 and knee13 OA cartilage. Lastly, several genes of the circadian
rhythm pathway have been shown to be dysregulated in OA carti-
lage (21, 27) and to regulate pathways in OA pathogenesis,
including the TGFb pathway36,44. Collectively, these observations
suggest that dysregulation of these pathways would compromise
tissue homeostasis and promote cartilage degeneration.

Whereas general analysis of gene expression changes offers
broad insight into dysregulated processes that might contribute to
OA pathobiology, it is challenging to select specific candidates with
greater potential for therapeutic targeting. For this reason, a main
focus of the present study was to identify TFs as key regulators of
DE genes. Starting with the complete list of TFs that are expressed
in human cartilage (Supplemental Table 3), we identified 93 TF that
were DE in OA (Supplemental Table 4) and interestingly, the ma-
jority were downregulated in OA cartilage. We also compared the
93 DE TFs with previous genome-wide transcriptomic studies using
normal and OA human cartilage8,14. We found substantial overlap
between DE TFs and we identified 13 TFs that were DE in all three
studies, with GLI3, RCAN1, and SOX11 being upregulated and
ATOH8, BCL6, CEBPB, CITED2, FOSL2, HIF3A, HMGB2, KLF15, SOX13
and ZBTB16 being downregulated in OA cartilage. Since most of
these TF have not been previously investigated in articular carti-
lage, they are attractive targets. Further studies are needed to
validate their function in chondrocyte homeostasis and OA
pathogenesis.

Our integrative data analysis prioritized TFs based on their dif-
ferential expression, enrichment for binding sites in DE genes, and
number of connections in a cartilage-specific subnetwork
(Supplemental Fig.1). The resulting eight transcription factors (JUN,
EGR1, JUND, FOSL2, MYC, KLF4, RELA and FOS) thus represent high
priority candidates for therapeutic intervention. To date, there is no
evidence about the role of KLF4 in articular cartilage. JUN, JUND,
FOS and FOSL2 encode different subunits of the AP-145. The func-
tion of AP-1 in chondrocytes remains to be more clearly elucidated.
There is evidence that IL-1 induces expression of MMP13 proteases
via activation of JUN/FOS heterodimers46e48. On the other hand,
AP-1 heterodimers containing FOS have been shown to be required
for chondrocyte differentiation49. RELA/p65 is a key subunit of the
NFkB protein complex that is involved in a wide range of biological
processes50. Whereas activation of the NFkB pathway by proin-
flammatory cytokines is considered a key driver of cartilage
destruction in OA51, a recent report showed that mice with ho-
mozygous deletion of RELA exhibit accelerated cartilage degener-
ation52. Only a small number of studies investigated the role of
EGR153 in chondrocytes54e56. EGR1 regulates terminal differentia-
tion of chondrocytes and also mediates the catabolic response to
proinflammatory cytokines. Overall, the limited available infor-
mation about the functions of these eight TFs in articular cartilage
suggests that they are involved in chondrocyte differentiation,
metabolism, stress responses and cell survival.

It is important to note that, in addition to the eight TFs
mentioned above, our subnetwork analysis also highlighted other
DE genes with high numbers of connections that may contribute to
the dysregulated gene expression in OA cartilage. For instance, the
transcription factor BHLHE40 (also known as DEC1) is a component
of the circadian molecular clock57,58 that also acts a chondrogenic
factor59,60. On the other hand, SERPINE1 is markedly upregulated in
OA cartilage. It encodes for plasminogen activation inhibitor 1 (PAI-
1), a serine protease inhibitor that inhibits tissue plasminogen
activator and urokinase, and that has additional actions that may be
dependent on or independent of its protease inhibitory effects61.
Interestingly, increased SERPINE1 expression was found in OA
affected areas9 and in a subgroup of OA patients14.

The main objective of the present study was to analyze OA-
related changes in gene expression in cartilage. As control group
we used joints that had no macroscopic or microscopic evidence of
cartilage damage. While this represents a clear distinction between
normal and OA, the limitation is that the normal donors weremuch
younger than the OA patients who had knee arthroplasty. It is thus
possible that some of the differences in gene expression are man-
ifestations of cartilage aging. The sample collection for the normal
cartilage donors was standardized and tissue for RNA isolation
obtained from the weightbearing regions on medial and lateral
femoral condyles. In human OA joints this is difficult since the
cartilage in the most weight bearing areas is often completely
eroded. To examine the effect of mechanical load additional studies
are needed where cartilage from areas that different in loading are
analyzed.

In conclusion, the present study is the first to analyze TFs on a
genome-wide scale for their role in cartilage homeostasis and po-
tential in OA pathogenesis. We used a novel approach to prioritize
the TFs for their potential as therapeutic targets for OA. The
involvement of these TFs in cartilage homeostasis and their value as
therapeutic targets need to be validated in studies on their function
in vitro and in vivo.
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