
TCLUST: A Fast Method for
Clustering Genome-Scale Expression Data

Banu Dost, Chunlei Wu, Andrew Su, and Vineet Bafna

Abstract—Genes with a common function are often hypothesized to have correlated expression levels in mRNA expression data,

motivating the development of clustering algorithms for gene expression data sets. We observe that existing approaches do not scale

well for large data sets, and indeed did not converge for the data set considered here. We present a novel clustering method TCLUST

that exploits coconnectedness to efficiently cluster large, sparse expression data. We compare our approach with two existing

clustering methods CAST and K-means which have been previously applied to clustering of gene-expression data with good

performance results. Using a number of metrics, TCLUST is shown to be superior to or at least competitive with the other methods,

while being much faster. We have applied this clustering algorithm to a genome-scale gene-expression data set and used gene set

enrichment analysis to discover highly significant biological clusters. (Source code for TCLUST is downloadable at http://

www.cse.ucsd.edu/~bdost/tclust.)

Index Terms—Microarray expression, clustering, graph algorithms, coconnectedness.

Ç

1 INTRODUCTION

WITH the current mRNA expression profiling technol-
ogy, expression levels of tens of thousands of genes

across hundreds of conditions are measured simulta-
neously. Genes with a common function are often hypothe-
sized to have correlated expression levels across different
conditions. It is not surprising that clustering algorithms
have been intensively studied for analyzing gene expression
data in order to detect the groups of genes with correlated
expression patterns. However, current clustering algo-
rithms commonly used in the domain of gene expression
do not scale well for genome-scale expression data.

In the context of gene expression data, it is convenient to
think of clustering on a graph in which the vertices
correspond to genes (or, probe sets), and edge weights
reflect the similarity/correlation between the expression
profiles of the probe sets. Generally, the correlation graph is
a complete graph with n � 105 nodes, and m � 109 edges. It
is a common strategy to sparsify the graph by discarding
the edges with edge weights smaller than a chosen
threshold. In our experiments, we observe that even after
filtering with a reasonable threshold, the number of edges
remains m � 107, resulting in a graph of complexity
mn � 1011. Therefore, it is critical to devise a clustering
algorithm that will scale well with very large graphs.

In this paper, we propose a fast method to identify the
dense subgraphs in correlation graph defined on genes (or,
probe sets). If clusters of functionally related genes were all

coexpressed, and those were the only coexpressed genes,
the correlation graph should look like a collection of disjoint
cliques. Errors and other biological variations will add
additional edges and remove some true edges. To simplify
exposition, we will consider these extra and missing edges
as erroneous data (false positives (FP), and negatives (FN),
respectively), even though they might be encoding a true
biological phenomenon. The resulting graph is therefore a
sparse graph with “dense subgraphs” embodying function-
ally related clusters.

Assuming the graph has an underlying clique structure,
identification of such dense subgraphs is known as “cluster
editing problem” in literature. The problem has been
proven to be NP-hard for arbitrary FP rates [1], [2], even
when FN=0. (the clique problem; [3].) In practice it is hard
for even moderate error rates. Fortunately, in the specific
domain of gene expression, the error rates appear to be low
enough for the approach to be viable.

Among the more popular algorithms for clustering gene
expression data are K-means, SOM, hierarchical clustering,
and CAST [4], [5], [6]. Previous studies comparing tradi-
tional clustering methods in microarray data have shown
that K-means and SOM have superior performance to
hierarchical clustering [7]. CAST has also been applied on
expression data with good results [6]. However, in our
experiments, they do not appear to scale well for large
expression data sets, as discussed later in the text. Both K-
means and CAST are similar in one sense as they both
dynamically update clusters by assigning and removing
vertices iteratively, according to a stated objective. In K-
means, the objective is to reduce the intracluster variation,
while increasing the intercluster variation. However, the
number of clusters (K) is an important parameter, and must
be specified in advance.

CAST updates clusters with no prior knowledge of the
number and size of the clusters. It constructs one cluster at a
time by iteratively examining each vertex relationship to an
open, nonstabilized, cluster. CAST then uses affinity of a
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vertex to the cluster to determine whether the vertex
belongs or not. Affinity of a vertex v to an open cluster C
is measured by the sum of the edge weights going from v to

the current members of C. CAST alternates between adding
and removing vertices until all members but not nonmem-

bers of C have high affinity to C. The key parameter here is
affinity which determines the number and sizes of the
clusters. For very large data sets, it takes a lot of time as it

will take many iterations for the vertex $ cluster relation-
ship to stabilize.

The weighted cluster editing problem (defined below)
has also been directly studied by Rahmann et al. [8]. The
authors define a cost function, and describe a fixed-
parameter algorithm which reaches its limit above 50 ver-
tices. They also suggest an alternative fast, Oðn2Þ, layout-
based heuristic for large graphs. While faster, it is still
computationally intensive. In self-reported results, the time
increased exponentially, requiring � 105 s on graphs of
complexity of 108. Additionally, it requires setting of up to
five input parameters.

We observe that existing approaches do not scale well for

large data sets, and indeed did not converge for the data set
considered here. In our experiments, we use microarray

data acquired from 11 tissues in each of 29 inbred strains of
mice Affymetrix MOE430v2 GeneChips (45,101 probe sets).
This data set represents a “genetical genomics” or “eQTL”

microarray experiment [9]. While the vertex set is large, it is
sparse in the edges. Of the � 109 possible edges, 4:2� 107

exceed a correlation coefficient of 0.3, resulting in graphs of

complexity 1011.

2 WEIGHTED CLUSTER EDITING PROBLEM

Unweighted cluster editing problem is to make the fewest
number of changes to the edge set of an input graph such

that the resulting graph is a disjoint union of cliques. In this
paper, we address the “weighted cluster editing problem”
in the context of gene expression data which also takes the

edge weights into account.

2.1 Definitions and Notation

Following Rahmann et al. [8], we consider a set of genes V
and a symmetric function s : V 2 ! Rþ that reflects the

similarity between the expression profiles of the genes in V .
Given a weighted undirected correlation graph G ¼ ðV ;EÞ,
where E ¼ fðu; vÞjsðu; vÞ > 0g, our goal is to edit G by

removing and adding edges in such a way that it becomes a
union of disjoint cliques where each clique corresponds to
subsets of genes with highly correlated expression profiles.

Each operation incurs a nonnegative cost: If ðu; vÞ 2 E,
the edge removal cost of (u,v) is c� ¼ sðu; vÞ. If ðu; vÞ 62 E,
the edge addition cost of (u,v) is cþ ¼ �sðu; vÞ. Note that for

similar vertex pairs u and v, removal of ðu; vÞ will incur a
nonnegative cost. Likewise, for distant u and v pairs,
addition of ðu; vÞ will incur a nonnegative cost.

Consequently, the cost to transform the initial graph G ¼
ðV ;EÞ into a graph G0 ¼ ðV ;E0Þ is defined as follows:

costðG! G0Þ ¼
X

ðu;vÞ2EnE0
c�ðu; vÞ þ

X
ðu;vÞ2E0nE

cþðu; vÞ:

2.2 Problem Statement

Given a similarity function s : V 2 ! Rþ and a weighted
undirected graphG ¼ ðV ;E; sÞ, find a union of cliques graph
G� such that costðG! G�Þ ¼ minfcostðG! G0jG0 is a union
of disjoint cliquesÞ.

In our method to tackle this problem, we do not explicitly
use the cost function, but use it as an evaluation criterion for
our simulation results. We show that the output of our
algorithm minimizes the cost function when the error rate is
low, and its corresponding cost is close to the optimal when
the error rate is high. (See Section 5.3, Fig. 5.) As noted
earlier, algorithms with explicit theoretical guarantee on
performance are intractable for the large data sets. Further,
assuming an underlying “corrupted-clique” model to
explain real data, the method is guaranteed (Section 3) to
improve in each iteration. This provides a theoretical
foundation for its performance on real data.

3 COCONNECTEDNESS-BASED HEURISTIC

In this section, we propose a heuristic-algorithm-based
coconnectedness to tackle weighted cluster editing problem.
Co-connectedness is described as the fraction of neighbors
shared by the pair, and has been used in many different
graph-theoretical problems [10], [11]. To illustrate using an
example, consider Fig. 1. The underlying clique structure of
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Fig. 1. Illustration of coconnectedness-based heuristic for an un-
weighted graph. Graph and its adjacency matrix as an image are
shown in the top panel. Color scale is from 0 (black) to 1 (white). In the
second and third panels, TCG1 and TCG2 are shown, respectively. The
threshold-applied and binarized version of each is also shown to indicate
that TCG gets closer to the underlying clique structure in each iteration.
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the input graph has two independent cliques formed by the
vertices 1; 2; 3; 4; 5; 6 and 7; 8; 9; 10; 11. The observed graph
has some noise as some of the edges within the cliques are
missing and there are some edges between the cliques.

For any vertex u, define the neighborhood vector ~u as the
bit vector describing the set of neighbors. For example,
~1 ¼ ½1; 1; 0; 1; 1; 1; 0; 0; 0; 0; 0�. We use the Tanimoto coeffi-
cient (TC) to describe coconnectedness of two vertices u and
v as follows:

TCðu; vÞ ¼ ~u �~v
~u �~uþ~v �~v�~u �~v : ð1Þ

Note that the TC here is identical to the Jaccard Coefficient
(JCðu; vÞ ¼ jNu\Nvj

jNu[Nvj ), but also works for weighted graphs
(Section 4.2). It measures not only if two vertices are
connected to the similar set of vertices but also if they are
connected with similar edge weights.

In Fig. 1, for visualization purposes, we display the
adjacency matrices of the graphs as images. Observe that for
a spurious edge ð2; 9Þ, TCð2; 9Þ is low, while for the missing
edge ð2; 4Þ, TCð2; 4Þ is high. Therefore, computing TC, and
applying a threshold, we get a new sparse graph, TC graph,
with fewer errors. Within two iterations, the graph reverts
to a collection of two cliques. Note that TC of two vertices
does not have direct interpretation of their original edge
weight. It is possible for two vertices with high edge weight
to have low TC and for two vertices with low edge weight
to have high TC. We treat a high edge weight as FP if
measured TC is low. Similarly, if the measured TC is high,
we treat a low edge weight as FN.

We can generalize this idea and show calculations that
help to show convergence. Following Ben-Dor et al. [6],
define a ðd; �Þ-corrupted clique graph as a collection of disjoint
cliques, each of size d, in which intraclique edges are
removed independently with probability �0, and interclique
edges are independently added with probability �0 for an
arbitrary �0 2 ½0; ��.

Let G be a ðd; �Þ-corrupted-clique graph. If

� < min
ln d

3d
;
d

n

� �
;

we can show that there exists a tcg-threshold such that the
TC graph (TCG) is a ðd; �0Þ-corrupted-clique graph with
�0 < �. Note that if this is true, then, in each iteration, we
will converge toward the underlying clique structure. In
practice, we only need to do this for a few iterations and
then output the connected components.

Consider two vertices u; v from the same clique. Then,
assuming that edges in the clique are missing with
probability �

Eð~u �~vÞ � ð1� �Þ2d:

The inequality is because some spurious edges may add to the
dot product. Note that the dot product can be computed as the
sum ofd independent binary variables, each of which is 1 with
probability ð1� �Þ2. Consequently, we can use Chernoff’s
bound (e.g., [12]) to compute deviations from the mean as

Pr½~u �~v < ð1� �Þð1� �Þ2d� 	 e��2ð1��Þ2d=2; ð2Þ

for any � > 0. Correspondingly, for vertices u; v from
different cliques

Eð~u �~vÞ ¼ 2�ð1� �Þdþ �2ðn� 2dÞ 	 3�d;

and, an equality similar to (2) holds

Pr½~u �~v > ð1þ �Þ3�d� 	 e��23�d=4: ð3Þ

Finally, we have

Eð~u �~uÞ ¼ ð1� �Þdþ �ðn� dÞ:

The condition � 	 d=n implies that

ð1� �Þd 	 Eð~u �~uÞ 	 ð2� �Þd;

and, with high probability

ð1� �Þð1� �Þd 	 ~u �~u 	 ð1þ �Þð2� �Þd:

Finally, consider the expression ~u �~uþ~v �~v�~u �~v. Using
the Cauchy-Schwartz inequality, ~u �~v 	 maxf~u �~u;~v �~vg .
Therefore, with high probability

ð1� �Þð1� �Þd 	 ~u �~uþ~v �~v�~u �~v 	 2ð1þ �Þð2� �Þd:

Thus, if u; v are in the same clique, with high probability

TCðu; vÞ � ~u �~v
~u �~uþ~v �~v

� ð1� �Þð1� �Þ
2

2ð1þ �Þð2� �Þ

:

If u; v are in different cliques, then with high probability

TCðu; vÞ 	 ð1þ �Þ3�
ð1� �Þð1� �Þ :

If we can choose a threshold in between these two numbers,
then, with high probability, we will get rid of the spurious
edges, and add missing edges. This imposes the following
condition on �:

ð1þ �Þ3�
ð1� �Þð1� �Þ 	

ð1� �Þð1� �Þ2

2ð1þ �Þð2� �Þ ;

implying

ð1þ �Þ2

ð1� �Þ2
	 ð1� �Þ

3

6�ð2� �Þ ;

or

� � ð1� �Þ
3=2 � ð6�ð2� �ÞÞ1=2

ð1� �Þ3=2ð6�ð2� �ÞÞ1=2
: ð4Þ

Finally, we require that the probability that a spurious edge
remains in the TCG, or a true edge is missing is lower than
�. This is bounded using (2) and (3) to be

4e��
23�d=4 < �;

implying

�2 <
4 lnð4=�Þ

3d�
: ð5Þ
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Equations (4) and (5) are satisfied when � < ln d
3d , implying

that error is reduced in a single iteration of TCG generation.
In practice, our approach works well for much higher error
rates (� < 0:5), with results comparable to CAST, but
extending to larger data sets.

3.1 Running Time Analysis

If the average degree of vertex is d, computation of TC for a
pair of vertices costs OðdÞ. In each iteration of TCG
generation, we compute TC for only pairs with distance at
most 2, since otherwise TC will be zero. Thus, the running
time complexity of the algorithm is OðjV jd3Þ per iteration
and scales linearly with the number of iterations.

The number of iterations, K, depends on the size of the
underlying cliques and the error rate. At a fixed error rate
the neighborhood similarity for a pair of vertices in a small
clique is more influenced than a pair of vertices in a large
clique. Thus, it takes more iterations for smaller cliques to
edit all FP and FN edges. In our experiments, at error rate
� ¼ 0:2, in a corrupted graph of 640 vertices, we recover the
cliques of size 128 in TCG1, while we recover the cliques of
size 16 in TCG3. (See Fig. 4.)

4 TCLUST

Clustering of large gene expression data sets is challenging.
Our clustering method TCLUST is based on two ideas. The
first is an assumption that the expression clusters resemble
corrupted cliques, and coconnectedness can be used for
clustering. This, of course, cannot be proved. However, we
evaluate our clustering results using independent biologi-
cally meaningful metrics, and show that whether the under-
lying model is true or not, we can use coconnectedness.

The second idea, motivated in part by Gibson et al. [13],
is based on fingerprinting which suggests that coconnect-
edness can be exploited looking only at a subset of genes to
which a particular gene is highly correlated. As this subset
is small, our algorithm can comfortably handle large input
sizes. Any loss of performance is handled by repeated
iterations of the coconnectedness heuristic from Section 3.

Fig. 2 provides an overview of TCLUST. A fingerprinting
strategy is used to generate a correlation coefficient graph
(CCG) from gene expression data. This is followed by
iterative computation of TCG until connected components
of the TCG are clique-like. Note that, once a connected
component is dense enough, it will only get denser in
subsequent iterations and no two disjoint connected
components will be merged. Thus, it is possible to output
a connected component as a cluster at any iteration as its
edge density, i.e., number of edges/number of pairs
exceeds a threshold.

While CAST and TCLUST both have similar goal of
identifying underlying cliques, TCLUST should converge
faster as vertex pairs with strong (respectively, weak)
coconnectedness are quickly identified as such, and remain
as edges (respectively, nonedges) for the remainder of the
iterations. Specifically, if the two vertices end up in different
connected components, their TC will always be 0, and they
will never converge into one component. This implies that
we only need to compute TC for vertex pairs in the same
connected component, and a few iterations should suffice to
establish the clusters.

We apply our method on a mouse gene expression data
set with 45,101 probe sets and 295 samples. (See the
Appendix for details.) In our experiments, we show that
TCLUST is very efficient while it is still able to detect
biologically meaningful gene groups.

In the following sections, we discuss the different steps
spelled out in the flowchart in detail. In Section 5, we
demonstrate the performance of our algorithm on simulated
data. In Section 6, we compare the performance of TCLUST,
CAST, and K-means on filtered expression data. Finally, in
Section 6.3, we apply TCLUST to our large gene expression
data set for gene set enrichment analysis.

4.1 Generating Correlation Coefficient Graph

We use the Pearson’s correlation coefficient as a measure of
coexpression of genes/probe sets. Let xik denote the
expression level of pi in the Kth sample. For a pair of
probes pi; pj

sðpi; pjÞ ¼
Pn

k¼1ðxik � �xiÞðxjk � �xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1ðxik � �xiÞ2

Pn
k¼1ðxjk � �xjÞ2

q :

Clearly sðpi; pjÞ ¼ sðpj; piÞ. Define CCG as a complete
undirected, weighted graph ðV ;E; sÞ, with s defining edge
weights. We use a threshold on the weights, only including
edges that exceed the threshold. Other results have
suggested that rank-based correlations are more robust to
noise. However, in our own experiments, the data set was
of sufficiently high quality that we continued with
Pearson’s correlation, which was required by our colla-
borators on the project.

It is a common strategy to reduce the complexity of CCG
by discarding the edges with edge weights smaller than a
chosen threshold. In our experiments, we observe that
correlation coefficients of a probe set with the rest of the
probe sets follow a unimodal distribution with a small tail.
(See Fig. 3 for the distribution of four randomly chosen
probe sets.) However, the shape of the distribution differs
from probe set to probe set. This makes it difficult to set a
fixed threshold that would not be biased for any probe set.
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Fig. 2. Flow chart for the TCLUST algorithm.
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We use a novel per-vertex-threshold scheme to determine
edges. First, define the top-neighbors of vertex pi, NðpiÞ as
follows: let �i and �i be the mean and standard deviation of
the correlation coefficients between vertex pi and all other
vertices in V , respectively. Denote pj 2 N�ðpiÞ if and only if

sðpi; pjÞ � �i þ ��i:

Define CCG� ¼ ðV ;E�; sÞ, where V is the set of probe sets,
and

E� ¼ ðpi; pjÞjpi 2 N�ðpjÞ; pj 2 N�ðpiÞ
� �

:

Per-vertex thresholding can be thought as a fingerprint-
ing scheme where each vertex/probe set is fingerprinted
with the set of its top neighbors. It keeps the graph sparse,
and also controls for certain vertices (genes) having higher
overall expression values compared to other genes. We use
CCG3 (determined empirically) as the input to TCLUST.
However, note that no assumption is made w.r.t the
distribution of scores of correlated genes.

We reiterate that the sparsification by edge and node
thresholding is provided as an option which allows us to
handle large graphs. It is neither required nor assumed that
the input is sparse. Indeed, while evaluating cluster quality,
we compare against the original (complete) graph. It is
possible that the sparsification could reduce the quality of
our clusters. However, the coconnectedness property is
mostly preserved by sparsification, and our results show
that there is no loss of quality by introducing this.

4.2 Generating Tanimoto Coefficient Graph (TCG)

The TC is a measure of similarity between two real-valued
vectors, defined by (1). For a weighted graph, G ¼ ðV ;E;wÞ,
denote

~Wi ¼ ½wðpi; pjÞ : pj 2 V �

as the vector of edge weights incident on vertex pi. We
define the TC between a pair of vertices ðpi; pjÞ as follows:

TCðpi; pjÞ ¼ TCð ~Wi; ~WjÞ:

This reweighing of edges allows us to define a family of
Tanimoto Coefficient Graphs TCGk

t for arbitrary k 2 Zþ, and a

real-valued tcg-threshold t. Specifically, TCG0
t ¼ ðV ;E;wÞ

and ~W 0
i ¼ ~Wi.

For k > 0, TCGk
t ¼ ðV ;Ek; wkÞ, where

Ek ¼ ðpi; pjÞjTCð ~Wk�1
i ; ~Wk�1

j Þ � t; 8pi; pj 2 V
n o

;

wkðpi; pjÞ ¼
TCð ~Wk�1

i ; ~Wk�1
j Þ; ðpi; pjÞ 2 Ek;

0; otherwise:

(

As we iterate over TCGK for K ¼ 0; 1; . . . , the connected
components should resemble the underlying clique struc-
ture. Therefore, we output the connected components as the
final clusters.

4.3 Implementation of TCLUST

We implemented the core algorithm in C++. The input to
the program is the CC graph, a tcg-threshold t 2 R, and
k 2 Zþ, the number of iterations. (See Fig. 2.)

We use R [14] statistics package to generate the CCG for
input to TCLUST. We compute the correlation matrix and
filter the matrix using per-vertex thresholding technique.

5 RESULTS ON SIMULATED DATA

5.1 Corrupted Random-Weighted Graph Model

Ben-Dor et al. [6] proposed a natural corrupted random
graph model to test the performance of CAST in retrieving
the underlying clique structure from “corrupted” graphs.

We extend their model to include weighted graphs. The
Corrupted Random-Weighted Graph (CRWG) model has
three input parameters (S; T ; ") defined as follows: S is the
underlying clique structure denoted by the size of the
underlying cliques. As an example, S ¼ ½2� 8; 2� 16; 1�
32� denotes a structure consisting of two cliques of size 8,
two cliques of size of 16, and one clique of size 32. T is the
intraclique threshold, i.e., any edge weight within a clique is
larger than T and any edge weight between cliques is less
than or equal to T . Finally, " is the error range of the
observed edge weights.

In the ideal case, we assume a weighted complete graph
with an underlying clique structure where " ¼ 0. Therefore,
when a threshold T is applied, we can retrieve the cliques.
In CRWG model, this ideal case is corrupted. Each edge
weight w is replaced by a random weight uniformly
distributed in the range ½w� "; wþ "�. Thus, when the
threshold T is applied on the observed graph, an interclique
edge may appear since ðwþ "Þ may exceed t, and an
intraclique edge may not appear since ðw� "Þ may be
smaller than T . The effect of changing weight is the
weighted analog of adding spurious edges, or deleting true
edges in the corrupted-clique model. An edge with actual
weight T < w 	 T þ � is not in the thresholded observed
graph G with probability T�wþ�

2� 2 ½0; 0:5Þ. Similarly, an edge
with actual weight T � � < w < T is in G with probability
wþ��T

2� 2 ð0; 0:5Þ.
The output of TCLUST is a set of clusters. In a corrupted

graph model, it is reasonable to think of each cluster as a
complete subgraph. However, data sets may only have
underlying dense subgraphs which are not complete.
Therefore, we can use either the TCGk itself as the output
or we can use the collection of cliques induced by the
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Fig. 3. Distribution of correlation coefficients with the rest of 45K probe
sets for four randomly chosen probe sets.
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vertices of each connected component of TCGk as the
output. We test both of these outputs in the following
sections. In the second case, we also compare against a
version of CAST, reimplemented for the weighted case.

5.2 Recovering Underlying Structure by TCG

To test the performance of iterative computation of TCG in
recovering the underlying cliques, we generate 20 random
graphs using the CWRG model with S ¼ ½16� 8;
8� 16; 4� 32; 2� 64; 1� 128�, T ¼ 0:6, and 0:1 	 " 	 0:5.
Note that each graph has 31 underlying cliques of sizes
8; 16; 32; 64; 128 and the number of vertices participating in
different size cliques is the same. The input graph G to our
clustering algorithm is the threshold graph that is obtained
by filtering the edges with weights smaller than T ¼ 0:6.
Thus, G has a number of extra and missing edges
depending on the error rate �.

If an edge in TCG is indeed between two clique
members, it is considered as a TP ; otherwise, an FP . TN
and FN are defined accordingly. We use two similarity
measures: sensitivity and specificity. We define sensitivity as
TP=ðFN þ TP Þ and specificity as TN=ðFP þ TNÞ.

Fig. 4 shows our simulation results for the comparison of
underlying clique structure S with filtered TCG1, TCG2;
and TCG3 by applying tcg-threshold. The tcg-threshold is
varied between 0.1 and 0.9 to select the setting with better
sensitivity and specificity results. In Fig. 4, the results with
only the best settings are shown.

The results show that iteratively generating TCG allows us
to get closer to the underlying clique structureS. For example,
in the case where " ¼ 0:2, sensitivity and specificity values for
G are improved from (87 percent, 92 percent) to (99 percent,
99 percent) by TCG1 and to (100 percent, 100 percent) by
TCG2 revealing S exactly. In each case, we improve
significantly upon the corrupted graph.

5.3 CAST versus TCLUST

In this section, we compare the performance of TCLUST
with CAST [6]. As the code of CAST was not available, and
we need a version that works for weighted graphs, we

implemented TCLUST and CAST algorithms in C++ using
the same framework. While there is the real caveat of
comparing our own implementation of CAST, we took care
to maintain the fidelity of the approach. Indeed, the project
started out by attempting to use CAST to cluster the data
sets. However, in the interest of fairness, the results below
are best interpreted by considering the CAST running times
generically. Both return a collection of cliques. We evaluate
the quality of the output clique graphs by comparing their
associated cost from the input graph with the cost of
obtaining the underlying clique structure S.

We compare the results for CAST and TCLUST of degree
K ¼ 2; 3. Both CAST and TCLUST take a parameter as
input: affinity-threshold and tcg-threshold, respectively. We
vary both parameters from 0.1 to 0.9. In Fig. 5, we show the
simulation results of CAST and TCLUST with only the
setting which is optimal in terms of cost.

This simulation shows that both CAST and TCLUST
closely approximate the cost of the underlying clique
structure even with high error rate. However, TCLUST
has better sensitivity and specificity results with a much
lower standard deviation at each error rate. Note that each
connected component is treated as a complete graph in this
test. This changes the FP, and FN rate, and so the results in
Figs. 4 and 5 are not directly comparable.
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Fig. 4. Comparison of underlying clique structure and filtered TCG1,
TCG2, and TCG3. Average cost, sensitivity, and specificity are plotted
with error bars. Random graphs are generated by the CRWG model with
parameters S ¼ ½16� 8; 8� 16; 4� 32; 2� 64; 1� 128], T ¼ 0:6, and "
ranging from 0.1 to 0.5. TCGk is the kth-order TCG computed from S’
iteratively. Sensitivity ¼ TP=ðFN þ TP Þ and specificity ¼ TN=ðFP þ
TNÞ are computed according to S, where TP, FP, TN, and FN are
defined based on the existence of edges after applying the tcg-threshold
on the generated TCG. Tcg-threshold is set to its optimal values among
½0:1; 0:2; . . . ; 0:9�.

Fig. 5. Comparison of CAST and TCLUST with K ¼ 2; 3. Random
graphs are generated by the CRWG model with parameters
S ¼ ½16� 8,8� 16, 4� 32, 2� 64, 1� 128�, T ¼ 0:6, and " ranging from
0.1 to 0.5. Sensitivity ¼ TN=ðFP þ TNÞ and specificity ¼ TP=ðFN þ
TP Þ are computed according to S. While computing sensitivity and
specificity, clusters obtained by the method are treated as a clique.
Affinity-threshold and tcg-threshold are set to 0.5 and 0.2, respectively,
which are their best settings among the values ½0:1; 0:2; . . . ; 0:9�.
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6 COMPARISON OF DIFFERENT CLUSTERING

METHODS ON MICROARRAY EXPRESSION DATA

We compare TCLUST with two existing methods: K-means
and CAST on microarray data. We explore the performance
of these methods over a wide range of their parameters (K,
affinity-threshold, tcg-threshold). We limit the data set to
5,000 probe sets with the highest variation across samples,
as K-means and CAST did not converge for larger sizes. In
the next section, we will present results of TCLUST on the
complete data set (45K probes).

We use a weighted version of CAST for comparison [6].
We applied a prefilter to the pairwise similarity matrix,
discarding all edges less than 0.3. In the absence of a
prefilter, CAST does not converge and outputs only five
clusters of almost equal sizes, none of which were
functionally enriched.

6.1 Functional Enrichment

In clustering genes according to the expression data, a
common goal is to cluster functionally related genes, and
we use this as a test for the three methods. We extracted
all functional gene sets (FGS) of size 	 500 from six
different databases: KEGG pathways database (KEGG)
[15], ingenuity pathways database (ING) [16], gene
ontology (GO) database [17] in categories cellular compo-
nent (CC), molecular function (MF), and biological process
(BP), and mouse phenome database (MPD) [18]. The
chosen 5,000 probe sets map to 3,776 genes, of which
23.36 percent are annotated in KEGG, 21.21 percent in
ING, 31.89 percent in CC, 64.27 percent in MF, 58.16 per-
cent in BP, and 30.27 percent in MPD.

The first step is to decide if a predicted cluster C is
functionally enriched in an FGS F . We compute a p-value
for enrichment of F in C, using a hypergeometric test [19].
For details, see Appendix A3. We set the significance
threshold to p 	 0:001. Also, we say that a cluster is
functionally enriched if it is significant for at least one FGS.

As the parameters for clustering are changed, we get
differing number/sizes of clusters. Larger cluster sizes
include more genes, but are less likely to be enriched in a
single FGS. Therefore, we use gene coverage—defined as the
fraction of genes in functionally enriched clusters—to
compare the different methods. However, some of the
functional databases may not include all genes. Therefore, a
related measure is db-coverage, defined as the fraction of
genes annotated in the specific database that end up in a
functionally enriched cluster.

In Fig. 6, we compare TCLUST, CAST, and K-means in
terms of gene coverage and db coverage. For each clustering
method, we show seven different parameter settings
exploring a wide range. The tcg-threshold for TCLUST
varies from 0.2 to 0.8, the affinity threshold for CAST varies
from 0.3 to 0.9, and the number of clusters for K-means
varies from 200 to 3,000 so that all three methods give
similar ranges for the number of clusters. Each choice of a
method, and a parameter setting is plotted according to its
gene, and db-coverage. The best parameter settings for all
three methods are highlighted by larger data points and
labels in the plots.

The results show that TCLUST does generally better than
CAST and K-means. The best setting for TCLUST has better
gene, and db-coverage compared to best setting of CAST
and K-means, and also many other settings show high
coverage. Note that the gene coverage in the functionally
enriched clusters is limited to 30 percent for all methods
because of incomplete gene annotation.

We use a false discovery rate (FDR) approach to evaluate
the significance of the number of functionally enriched
clusters obtained by the clustering methods. We picked the
best parameter setting that achieves the highest database
coverage for each method. We computed many random
permutations of gene annotation labels. Each method/
parameter setting pair is applied to the randomized data in
which the number and the size distribution of the clusters
remain the same. Any enriched cluster discovered in a
randomized data is a false positive. The ratio of the average
number of false positives to the actual number of
functionally enriched clusters describes the FDR.

In Table 1, we give the db-coverage, the number of
functionally enriched clusters, and the associated FDR
results for the clusterings obtained by TCLUST, CAST,
and K-means with their best parameter settings. As we see,
FDR for TCLUST is substantially lower than the FDR for
CAST and K-means while it achieves better db-coverage
and higher number of functionally enriched clusters. This
observation suggests that larger database coverage of
TCLUST is not due to the size distribution or number of
the clusters.
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Fig. 6. Comparison of TCLUST, CAST, and K-means in terms of gene
and database coverage in the functionally enriched clusters. For each
clustering method, seven different parameter settings are shown. The
number of clusters for K-means varies from 200 to 3,000, affinity-
threshold for CAST varies from 0.3 to 0.9, and tcg-threshold for
TCLUST varies from 0.2 to 0.8. The best settings for TCLUST, CAST,
and K-means (tcg-threshold¼ 0:3, aff-threshold¼ 0:5, and K ¼ 200) are
highlighted by larger data points in the plots.
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6.2 Timing

In this section, we compare K-means, CAST, and TCLUST
with K ¼ 0; 1; 2 in terms of timing for different numbers of
probe sets to cluster. (See Table 2.) K-means takes the whole
similarity matrix as input while TCLUST and CAST take an
input graph using similarities. The timing for generation of
the similarity matrix and the input graphs is excluded and
only the time required for the algorithm itself is given. For
TCLUST, we give three timing results varying the degree K
of the algorithm from 0 to 2. We give three timing results also
for CAST, running on the complete, filtered at a cut-off, and
per-node thresholded similarity graphs. Originally, CAST
takes the whole similarity matrix as input. However, as the
graph gets larger, CAST becomes intractable. Thus, we assess
also the timing for CAST after applying a cut-off=0.3 on the
similarity matrix. In order to clarify gain in running time by
per-node thresholding, we also report running time of CAST
on the per-node thresholded similarity graph.

The number of probe sets is varied from 100 to 10K by
selecting the probe sets with the highest variation across the
samples. The timing table was extended until N ¼ 45K for
TCLUST only as it is not feasible to run K-means and CAST
on large data sets. The parameters for the methods are
chosen as the setting that performed best on the 5,000 probe
sets in terms of gene and database coverage in Section 6.1
(aff. threshold ¼ 0:5; tcg-threshold ¼ 0:3; k ¼ N=25). The pro-
grams were run on machine with 32 GB memory and a
single 2.2 GHz AMD Opteron Processor.

Results clearly indicate the speed advantage of TCLUST.

6.3 Results on Complete Data Set

We ran TCLUST on the entire corpus of expression data
with the goal of identifying functionally related gene sets
using tcg-threshold=0.3. This threshold was optimized (as
described earlier) by using a reduced data set of randomly
chosen 5,000 probes (out of the 45,000 probes). As different
data sets vary in quality, such an optimization is desirable.
It is also worth noting that 1) other tools, like CAST, do not
provide any guidance on how to set parameters, and 2) our

tool, when run with default parameters, does not do much
worse on the data sets that we have tried (data not shown).

All 45,101 probe sets mapping onto 21,452 genes were
clustered. Of the 25,172 resulting clusters, majority were
singletons, and 550 had size in range ½3; 500� covering
5,994 probe sets. The clusters in size ½3; 500�were mapped to
Entrez gene IDs and then analyzed in terms of functional
enrichment in each of the gene annotation databases. There
were 32 out of the 550 clusters found to be functionally
enriched at p 	 0:001.

A cluster can be seen as a collection of two types of
members: annotated and unannotated. The annotated genes
are used to detect the FGSs in which the cluster is enriched
in. This information can be used as a quality measure for
the cluster and also as a basis for function prediction of the
unannotated members.

Among the clusters with the most significant functional
enrichments was one set of 231 genes dominated with genes
of muscle-related functions. It was functionally enriched in at
least one FGS in each database: muscle contraction (BP,
p < 10�37), contractile fiber (CC, p < 10�39), structural con-
stituent of cytoskeleton (MF, p < 10�14), and calcium signal-
ing pathway (KEGG, p < 10�25). There were 181 genes in this
cluster which were annotated in at least one of the enriched
categories. The enrichment in muscle contraction is defined
by 28 genes which are primarily in the actin, actinin, myosin,
tropomyosin, and troponin protein families, genes which are
well known to play important roles in muscle tissue [20]. This
enrichment is also supported by 32 members of the actin,
actinin, myosin, and troponin protein families which had no
previously annotated role in muscle function. In addition,
there are also some members of this cluster which also had no
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TABLE 1
False Discovery Rates Associated with the Number of

Functionally Enriched Clusters (#fec) for
TCLUST, CAST, and K-Means

The parameter setting which is best in terms of gene and database
coverage is used for each of the clustering method. At high gene and
database coverage, TCLUST still has lower FDR.

TABLE 2
Timing Results in Seconds as a Function of N, the Number of
Input Probe Sets to Cluster for TCLUST, CAST, and K-Means

The parameters for the methods are chosen as the setting that
performed best on the 5,000 probe sets in terms of gene and database
coverage (aff. threshold=0.5, tcg-threshold=0.3, k = N=25). We give two
timing results for CAST with and without a cut-off. Originally, CAST
takes the whole similarity matrix as input. We also assess the time by
applying a cut-off=0.3 on the similarity matrix, since as the graph gets
larger CAST becomes intractable. For TCLUST, we give three timing
results varying the degree K of the algorithm from 0 to 2. (* CAST does
not converge and reaches the upper limit for the number of iterations.)

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on May 03,2024 at 22:21:04 UTC from IEEE Xplore.  Restrictions apply. 



annotated role in muscle function but have been previously

discussed in literature. For example, the expression of

leiomodin 3 (Lmod3) shows high correlation with the other
members of the muscle contraction cluster, suggesting that it

might have a related function. This hypothesis is further

supported by known roles for the other leiomodin family

members, Lmod1 and Lmod2, in smooth muscle and cardiac

muscle function, respectively [21].
Another cluster we detected has 36 genes and it is

enriched in genes involved in hormone activity (MF,
p < 10�13), and cysteine-type endopeptidase activity (MF,
p < 10�3). Nine of the genes are annotated in hormone
activity, and three genes are annotated in cysteine-type
endopeptidase activity. Among the other unannotated genes
in this cluster are cathepsin 3 (Cts3). A putative role for Cts3
in hormone activity and peptidase function is supported by
evidence for extracellularly acting cathepsins mediating
thyroid hormone liberation in thyroid epithelial cells [22].

Although the examples highlighted here represent only
two of the many functionally enriched clusters discovered,
they illustrate the tremendous potential of functional
inference based on genomewide clustering.

7 CONCLUSION

We introduce here a new method, TCLUST, for clustering
large, genome-scale data sets. The algorithm is based on
measures of coconnectedness to identify dense subgraphs
present in the data. We have applied this method to a large
reference gene expression data set, and showed that the
resulting clusters show strong enrichment in known
biological pathways.

Although TCLUST has been shown to perform as good
as or better than existing methodologies, as with any
methodology, certain caveats must be noted. A possible
shortcoming might be that once two vertices end up in
different clusters, they are never reconnected. On the one
hand, this makes the algorithm converge faster; on the other
hand, it might lead to some loss of sensitivity for higher
error rates. In principle, this could be adjusted, by applying
the tcg-thresholds more judiciously, gaining some FN edges
at the cost of some FP edges, and increasing the number of
iterations. We will explore this, and similar directions in
future research. Also, the theoretical justification will be
clarified and extended to more general settings. Specifically,
while we present sufficient conditions on error rate �, we
do not report any necessary conditions. These will be the
subject of future investigation.

While the development of TCLUST was motivated by the
lack of a suitable clustering tool for large gene expression
data sets, its performance on smaller data sets is superior to
or at least, competitive with established methods. More-
over, the method is based on the relatively broad assump-
tions that the clusters behave like dense subgraphs of an
appropriate sparse subgraph. Therefore, TCLUST should be
applicable in a variety of biological settings, and offers a
new approach, complementing existing methods. As
biological data sets continue to grow in scale, the
importance of efficient algorithms for clustering genome
scale will become paramount, requiring continued devel-
opment of efficient algorithms.

APPENDIX

A.1 Expression Profiling and Preprocessing

Eleven tissues (adipose, amygdala, dorsal root ganglia,
frontal cortex, hippocampus, hypothalamus, liver, nucleus
accumbens, pituitary, skeletal muscle, and spleen) were
dissected from a panel of 29 diverse inbred strains. Gene
expression analysis was performed using Affymetrix
MOE430v2 GeneChips. After samples which did not pass
quality control were removed, data for 295 samples
remained. (See Table 3.) Each microarray measured expres-
sion for 45,101 probe sets targeting 21,452 unique mouse
genes. Each expression measurement was summarized by
gcRMA (bioconductor package; [23], [24]) from the quantile-
normalized probe intensities of a probe set.

We treat each set of the same tissue samples from up to
29 diverse inbred mouse strains as a separate tissue-specific
data set. We preprocess each of these 11 data sets separately
by centering the log-transformed intensity values at zero, to
highlight the variation in expression across strains and
emphasize genetic background. We then merge the data
sets so that we have a single data set with 45,101 probe sets
and 295 samples.

A.2 Biological Knowledge Represented in Gene Sets

The gene ontology (GO) database [17] was downloaded from
http://www.geneontology.org/ontology/gene_ontology.
obo. The snapshot of Apr. 03, 2006, was used in this analysis,
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TABLE 3
Eleven Tissues Dissected from 29 Strains: Adipose (AD),

Amygdala (AM), Dorsal Root Ganglia (DR), Frontal Cortex (FC),
Hippocampus (HC), Hypothalamus (HT), Liver (LV), Nucleus

(NC), Pituitary (PT), Skeletal Muscle (SM), Spleen (SP)

The samples for which gene expression data are available are indicated
by “*.”

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on May 03,2024 at 22:21:04 UTC from IEEE Xplore.  Restrictions apply. 



which contains 21,316 GO terms in three categories for
biological process (BP), molecular function (MF), and cellular
component (CC). Three unknown categories, “GO:0000004,”
“GO:0005554,” and “GO:0008372”, were removed for the
analysis. The mapping from Entrez Gene IDs to GO terms
was obtained from NCBI’s gene2go table (3 Apr. 2006,
snapshot from ftp://ftp.ncbi.nih.gov/gene/DATA/gene2-
go.gz). In addition, we utilized two databases of manually
annotated metabolic and signaling pathways. The KEGG
pathway database [15] was downloaded from ftp://ftp.
genome.jp/pub/kegg/pathways/mmu/. The snapshot of
26 Apr. 2006, was used, which contains 174 pathways for
mouse. Ingenuity pathways database (ING) [16] was
obtained from Ingenuity Systems, which contains 137 path-
ways for mouse. Finally, mouse phenome database (MPD)
[18], which is a repository of phenotypic and genotypic data
on diverse inbred strains was downloaded on 17 May 2007,
from http://phenome.jax.org/phenome. All flat-file for-
matted databases were parsed by individual python scripts
for use in the functional analysis.

A.3 Functional Analysis of Clusters

For each cluster and functional gene set (FGS) pair, the
enrichment p-value p is calculated as follows:

p ¼
NF

k

� �
N�NF

n�k
� �
N
n

� � ;

where NF is defined as the number of genes assigned to
the FGS, n is the number of genes in the cluster, K is the
number of genes in the cluster that are annotated in the
FGS, and N is the total number of genes [19].

A.4 Randomization Procedure for FDR Calculation

We compute the FDR associated with the number of
functionally enriched clusters obtained by a clustering as
follows: We generate 100 random clusterings with the same
number of clusters and cluster size. This is achieved by simply
permuting the probe set or gene labels. For each random
clustering, the number of functionally enriched clusters was
recorded so that we obtain a null distribution for the number
of functionally enriched clusters. We compute the FDR for the
actual number of functionally enriched clusters by

FDRðnÞ ¼ nR
n
;

where n is the actual number of functionally enriched
clusters, and nR is the mean number of functionally
enriched clusters in the null distribution.
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