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expected. However, the identity of expression
QTLs (eQTLs) should remain unaffected if
they genuinely influence transcript expression.
Contrary to this prediction, in the three recom-
binant inbred line Affymetrix data sets4–6 we
found an overall concordance of 39% to 70% of
eQTLs between the Microarray Analysis Suite 5
(MAS5) and Robust Multiarray Average (RMA)
analyses at a genome-wide significance level of
0.05; the highest concordance was observed
when comparing RMA with gene chip RMA
analyses (45%–85%). At the same significance
level, the 31-BxD liver data (two-color glass)
showed similar patterning of concordance: the
highest concordance (76%) was observed when
comparing print-tip loess normalization with
print-tip loess that was followed by interarray
quantile normalization.

Loci with association to many transcripts
might seem to be strong candidates for harbor-
ing a trans-acting transcriptional effector and
are likely to be prioritized in downstream analy-
ses—particularly since such loci could imply a
functional relationship between the coregu-
lated genes, or ‘regulons’9. We hypothesized
that reproducibility of linkage from multitran-
script linkage peaks (Supplementary Methods)
across different normalizations would be higher
than the overall degree of overlap, but in prac-
tice this varied greatly, both within and between
different experiments (Supplementary Fig. 3
online).

In order to gain further insight into the
degree of between-array normalization that
is appropriate for detecting plausible genetic
signal, we undertook a simulation study of 32
RI strains, with 1.5% of simulated transcripts
being subject to a genetic influence from a

single locus (Supplementary Methods). These
simulated data were then further modified to
introduce systematic biases (Supplementary
Methods), including per-array changes in mean
and variance, in order to model systematic bias
consistent with that observed in empirical data.
From this modified data set, the best recovery of
modeled genetic signal was made from quan-
tile-normalized data (Supplementary Table 1
online), indicating that conservative adjust-
ment of differences in interarray data structure
permits recovery of an embedded genetic signal
relative to less conservative removal of interar-
ray structure.

Collectively, these observations demonstrate
that differences in normalization of raw micro-
array data can have a profound influence on
the ability of genetical genomics experiments to
identify transcripts demonstrating genetic link-
age and their cognate eQTLs. We cannot easily
determine the nature of the artifactual signals
that are propagated through normalization, in
part because it is likely to vary from experiment
to experiment. We would suggest that the fol-
lowing considerations should apply: (i) follow-
ing initial quality control (and, if appropriate
for the platform, intra-array normalization),
remove as much interarray data structure as
possible using platform-specific normalizations
(i.e., those based on scale or quantile normal-
ization); (ii) exclude genes with low-intensity
signal levels that are likely to arise from nonex-
pressed transcripts, as such data lacks biological
plausibility; (iii) perform linkage analysis on the
same data normalized by different approaches;
and (iv) treat linkage that is robust to indepen-
dent normalization techniques as more reli-
able than linkage that is not. Ultimately, the

interpretation of linkage data will be resolved
by experimental validation of large numbers of
detected linkage signals in genetical-genomics
experiments; these are presently unavailable in
any study published thus far.
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Chesler et al. reply:
Williams et al. raise an important point
concerning normalization that is not unique
to ‘genetical genomics’ but is generic to
microarray experiments. We address their
comments based on (i) the conceptual
and methodological grounds on which
conclusions were drawn, (ii) the observed
patterns of QTL concordance, (iii) the degree
to which we have covered these issues in our
work and (iv) a biological explanation of the
apparently widespread lack of concordance
among QTLs despite highly consistent
patterns of expression regulation.

Genetical genomics is subject to challenges
of both microarray and QTL analysis,
including appropriateness of normalization
and mapping methods and assessment
of statistical significance in a context of
massive correlation among statistical

tests. The difficulty in microarray analysis
comes from determining which method
best approximates ‘truth’ in a situation in
which truth is typically unknown. Seeking
consensus among multiple methods,
some of which are notoriously poor, does
not improve one’s ability to identify true
positives. Such an approach is likely to miss
many real loci because each method yields
both false positives and false negatives, and
the set of results concordant for all methods
will amplify false negatives because failure
to detect a QTL with any single method will
result in its exclusion. This is particularly so
in the methods of Williams et al., because
they used model-based nominal P values
and Bonferroni adjustment across markers
to establish linkage. The accuracy of these
values depends on the degree to which the
distribution of each transcript satisfies

model assumptions. Bonferroni correction is
a poor substitute for genome-wide
P values1 because the dense marker map
used by Williams et al. renders tests of
linkage to a transcript non-independent.
Excessively conservative significance
thresholds such as these are biased against
detection of concordance because they
increase the number of false negatives.
A comparison of the RMA and MAS5
algorithms uncovers a predominant pattern
of trans-regulatory band concordance (see
Fig. 2 of our central nervous system study2).

The challenge is to choose an approach
that best approximates biological reality.
In genetic association studies, there is a
method of applying this criterion for success.
Cis-regulatory QTLs are transcripts for
which the top locus controlling expression
of a given gene maps back to the gene itself.
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Figure 1 Effect of normalization on genetic analysis of gene expression. (a) Histograms of strain
intraclass correlation for expression of each of the 12,422 transcripts analyzed in Chesler et al.2 using
three different normalization methods. Median intraclass correlation is highest using RMA, indicating that
this method has generated the highest signal-to-noise ratio in this data set. (b) Upper panel: the RMA
transcriptome map shows a plot of peak QTL location for each transcript versus each transcript location.
Lower panel: a strikingly similar plot of peak RMA QTL location versus peak PDNN QTL location shows
that when there is a lack of concordance, QTL peaks are often found on a different trans-regulatory band.
The plot indicates the presence of polygenic regulatory mechanisms. GMb: genome megabase (genome
location sequentially from proximal chromosome 1 to distal chromosome 2).

The cis-regulatory QTLs provide a measure
of ‘correct’ QTL targeting. Their enrichment
gives an approximation of a method’s
ability to detect true positives. Given a
genome size of 3,000 Mb and markers every
10 Mb, this should occur by chance only
0.33% of the time (41 out of 12,422 results).
Cis-regulatory QTLs are unlikely mapping
artifacts. (They can be hybridization
artifacts, a problem addressed in our2

and others’ work3). Using cis-regulatory
QTL enrichment, we have compared
normalizations and report that RMA4

and PDNN5 (Paired Difference Nearest
Neighbors) methods perform best. These
methods also perform best on measures
of biological consistency, determined
using strain intraclass correlation for each
transcript6. This is the amount of trait
variance among strains relative to total
transcript variance. The normalization
that produces the highest median genetic
variance over the array maximizes between-
strain signal and reduces within-strain noise.
Again, RMA and PDNN are best
(Fig. 1a). Although it may seem that
many more QTLs are called using noisy
condensation algorithms, a greater
proportion of these are for traits with low
heritability—chance associations of noise
to genotypes. We have made all of this data
publicly available at http://www.genenetwork.
org so that users can compare the diverse
set of normalization methods. In a second
confirmatory approach, we report consistency
of genetic regulation of gene expression across
tissues in our original papers2,7. However,
the most important test of reliability
is concordance on fully independent
biological replication; Peirce et al.8 deal with
independent replication of QTLs using two
pairs of BXDs and F2 data sets available in
GeneNetwork: BXD F2 and BXD RI.

We concur that trans-regulatory QTLs
detected using single-QTL models vary
in their location owing to vagaries of
normalization. The explanation for this is
as much biological as it is statistical. Most
continuously distributed phenotypes,
including gene expression9, are regulated
by several genetic loci. Variations in
normalization may influence which of
several loci are detected when a single locus
model is applied. We have characterized
the relationships among trans-regulatory
bands, and we show that correlated gene
expression levels are actually regulated by
combinations of loci at the trans-regulatory
band locations10. Slight relative changes
introduced by various normalizations may
enhance association to one genetic locus

over another. Therefore, the maximum
LRS location may move from one trans-
regulatory band to another depending on
the method used, but the trans-regulatory
bands remain consistent. When the locations
of single-locus QTL peaks are compared
across normalizations, most non-concordant
transcript regulatory loci map to the
locations of other trans-regulatory bands
(Fig. 1b). Furthermore, because the single-
locus model is inappropriate, there will be
many false-negative QTLs. Each locus by
itself does not account for enough of the
trait variance to be detected without fitting
additional loci. Excessive thresholding
will increase false negatives. In Figure 3 of

Chesler et al.2, the heritability filtering and
false discovery rate (FDR) shading in the
plot of transcriptome QTLs for RMA- versus
MAS5-normalized data show this.

Williams et al. recommend a four-step
process similar to that described in our
previous work2, in which we report that
(i) the data were scaled, (ii) strain intraclass
correlation was used to select an optimal
normalization and identify transcripts
for which genetic linkage was a plausible
explanation for variability, (iii) mapping
was evaluated using several normalization
approaches and (iv) normalizations were
compared and illustrated, revealing the
same overall pattern of trans-regulatory loci
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Petretto et al. reply:
R.B.H. Williams and colleagues discuss
the robustness and consistency of linkage
analysis of microarray-based ‘genetical-
genomics’ experiments. The challenges
of data handling and statistical analysis
of microarray experiments have been
acknowledged, but we believe that standards
have now emerged that, in contrast to the
viewpoint of Williams et al., give credibility
and rigor to microarray research in general
and to the genetical-genomics design
in particular. We find that the Williams
et al. correspondence contains several
methodological weaknesses that undermine
the authors’ main conclusions.

We also believe that most of the issues raised
have been researched, discussed and resolved
in previous publications.

The central proposition of Williams
et al. is a lack of agreement between gene
lists for expression quantitative trait locus
(eQTL) linkages derived using different
normalization methods, such as MAS5 and
RMA (Fig. 1 in Williams et al.). However,
the difficulty of comparing lists of genes
has long been recognized1. Williams
et al. employed the ‘correspondence
at the top’ (CAT) plot2 to quantify the
concordance of linkage results in RMA,
gcRMA and MAS5 data sets but fail to
recognize that this method introduces

sensitivity to small changes in gene order by
arbitrarily dichotomizing the continuous
distribution of P values. For instance, the
top 20 significant transcripts identified as
dysregulated by normalization method
A may not necessarily be within the top
20 transcripts identified by method B,
despite all transcripts achieving statistical
significance with both methods. To illustrate
this point, we used the expression data
in our SHR and BN parental strains3 to
compare the RMA and MAS5 normalization
methods. The proportion of differentially
expressed genes in common between the
RMA and MAS5 data sets depends on
the ranks that are compared (Fig. 1a) and
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Figure 1 Comparison of the RMA and MAS5 normalization methods. (a) We compared the top 20 differentially expressed genes (P ≤ 5 × 10−5) detected
using MAS5 (red) or RMA (blue) with the top 20, 40, 60, 80, 100, 150, 200, 300 and 400 differentially expressed genes detected using RMA or MAS5
in fat tissue. The proportion of genes that are shared between the top ranks is reported for each comparison. For both RMA and MAS5 data sets, the top
400 genes all show differential expression with P ≤ 5 × 10−3. Differential expression analysis in kidney tissue showed similar results. (b) False discovery
rate (FDR) for different P value thresholds for the genes showing differential expression (P ≤ 0.05) in fat tissue between SHR and BN parental strains. Two
normalization procedures are compared: MAS5 (red) and RMA (blue). Inset: FDR for different P value thresholds in the range 10−8 to 10−3.
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across normalizations. A wealth of analytic
results went into the development of this
process, and we presented a select few in our
reports. We carefully evaluated different
normalizations and heritabilities and chose to
concentrate on specific normalizations that
minimize the number of QTLs called for non-
heritable traits. The answer to the question
of which method is best will await large-scale
validation of the gene expression data by
independent methods and, more importantly,
determination of the number of biological
insights gained from these approaches.
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