
Uncovering regulatory pathways that affect hematopoietic
stem cell function using ‘genetical genomics’
Leonid Bystrykh1, Ellen Weersing1, Bert Dontje1, Sue Sutton2, Mathew T Pletcher2, Tim Wiltshire2,
Andrew I Su2, Edo Vellenga3, Jintao Wang4,5, Kenneth F Manly4,5, Lu Lu5, Elissa J Chesler5, Rudi Alberts6,
Ritsert C Jansen6, Robert W Williams5, Michael P Cooke2 & Gerald de Haan1

We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic
stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped
recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands
of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic
cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes.
These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the
identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same
mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that
allows custom genetic linkage analysis and identification of coregulated transcripts.

The developmental potential of stem cells is tightly regulated by
genetic and epigenetic factors that collectively define a stem cell–
specific transcriptome. Irrespective of the tissue from which stem cells
are isolated, they are typically defined by their extensive proliferative
capacity, enabling rapid production of a large number of fully
differentiated daughter cells. To ensure maintenance of their compart-
ment, stem cells must undergo self-renewing divisions1. To identify
key stem cell genes that specify this poorly understood process of self-
renewal, several groups have embarked on genome-wide gene expres-
sion studies, comparing embryonic, neural and hematopoietic stem
cells2,3. Although unique stem cell transcripts have been identified by
each group, the overlap between the various data sets is limited4.
Therefore, the remaining challenge is to delineate those unique
transcriptional circuits in stem cells that collectively result in appro-
priate transitions in gene expression patterns and that distinguish stem
cells from nonstem cell progeny.

In previous studies, we used a genetic approach to identify loci
associated with variation in attributes of HSC populations5,6. We
showed that HSCs isolated from the bone marrow of DBA/2 (D2)
mice had higher turnover rates than those isolated from C57BL/6 (B6)
mice. The variation in the percentage of cells in S phase is a
cell-autonomous trait and is largely independent of cellular micro-
environment, indicating that it originates from distinct gene expres-
sion patterns in HSCs themselves7,8. Using a large panel of BXD
recombinant inbred (RI) strains of mice generated by crossing strains

B6 and D2, we defined a QTL on chromosome 11 called stem cell
proliferation-2 (Scp2) that modulates the percentage of cells in
S phase6. The same locus was associated with the difference in mean
mouse lifespan between these two strains6, suggesting that increased
stem cell turnover is one of the factors that underlie the aging process.
The relevance of this 10-cM region in isolation was confirmed in an
extensive analysis of backcrossed mice and, ultimately, in a congenic
mouse model9. In humans, the corresponding region maps to 5q31.1.
Deletions in this region are associated with myelodysplastic syndrome
and acute myeloid leukemia10,11, confirming the presence of unknown
essential genes in this region that regulate stem cell behavior.

To identify candidate genes, we have now used a ‘genetical geno-
mics’ approach. Genetical genomics entails an analysis of high-
throughput transcript expression patterns in a pedigree of genetically
distinct subjects in which variable levels of gene expression segregate.
The concept of this technique was first suggested by one of us12,13 and
was recently shown to dissect transcriptional regulation successfully in
fruit flies and yeast14–16. Here we used this new approach to identify
variation in gene expression patterns in HSCs isolated from fully
homozygous BXD RI strains of mice. In an accompanying paper,
Chesler and colleagues dissected variation in expression profiles in
forebrain of the same strains of mice17. One of the advantages of this
approach is that for any given transcript, on average, half of all
samples will carry the B6 allele whereas the other half will carry the
D2 allele. Therefore, there is an inherently large number of replicate
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transcript-specific tests. Together with the fact that replicate sampling
can be done easily using isogenic RI strains, this large number of tests
increases the statistical power of this type of array experiments
substantially13. Finally, by using a fixed reference population of
RI strains, we can explore gene pleiotropy and tissue-specific expres-
sion patterns, in this case, by comparing HSCs to a population of
forebrain neurons and glial cells.

RESULTS
Transcript QTLs in HSCs
We used highly purified Lin� Sca-1+ c-kit+ cells, containing all HSCs
and a subset of more committed progenitors, from the bone marrow
of female mice of 30 BXD strains. We deposited a limited number
of purified single cells in microtiter plates using in vitro long-term
bone marrow cultures to verify functional activity of each sample

(Supplementary Table 1 online). We isolated 16,000–118,000 stem
cells from three mice per strain and isolated total RNA from B10,000
cells, amplified using a linear amplification protocol and hybridized
to Affymetrix U74Av2 oligonucleotide arrays.

We then compared the strain distribution pattern of each individual
transcript with the genetic distribution of B6 and D2 alleles at 779
markers mapping throughout the genome using WebQTL (see URL
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Table 1 HSC transcripts showing strongest evidence of cis regulation

Gene Probe set Name

Transcript

position

(Mb) QTL markera
QTL

chromosome

Marker

position

(Mb) LRSb
Genome-wide

P valuec

Srp9 101579_at Signal recognition particle 9 kDa 183 D1Mit426 1 181 40.954 0.00000

Ctse 104696_at Cathepsin E 132 D1Mit218 1 128 85.621 0.00000

Creg1 160502_at Cellular repressor of E1A-stimulated genes 166 D1Mit145 1 168 35.823 0.00000

Cd1d2 101896_at CD1d2 antigen 466 D3Mit155 3 467 53.468 0.00000

F2r 95474_at Coagulation factor II (thrombin) receptor 1.854 D13Mit145 13 1.854 45.042 0.00000

Cst3 99586_at Cystatin 3 347 D2Mit423 2 347 42.038 0.00001

Ctsc 161251_f_at Cathepsin C 1.074 D7Mit350 7 1.070 47.264 0.00001

Runx1 92399_at Runt related transcription factor 1 2.196 D16Mit86 16 2.196 30.157 0.00001

Cnih 97528_at Cornichon homolog (Drosophila) 1.918 D14Mit121 14 1.920 33.537 0.00002

Fli1 94698_at Friend leukemia integration 1 1.296 D9Mit297 9 1.298 37.242 0.00003

Dctn6 160327_at Dynactin 6 1.166 D8Mit294 8 1.172 34.101 0.00006

Ptprv 92662_g_at Protein tyrosine phosphatase, receptor type, V 135 D1Mit218 1 128 34.349 0.00008

Flot1 95095_at Flotillin 1 2.237 D17Mit175 17 2.233 31.288 0.00008

Ccr2d 93397_at Chemokine (C-C) receptor 2 1.389 D9Rp2 9 1.387 34.321 0.00019

Gcet2 101147_at Germinal center expressed transcript 2.148 S16Gnf042.995 16 2.148 29.911 0.00029

Scoc 95467_at Short coiled coil protein 1.216 D8Mit75 8 1.215 30.694 0.00048

Il3ra 92955_at Interleukin 3 receptor a 1.889 D14Mit99 14 1.892 20.336 0.00054

Cd59a 101516_at CD59a antigen 302 D2Mit43 2 302 30.006 0.00057

Birc1f d 160605_s_at Neuronal apoptosis inhibitory protein 6 1.214 D8Mit75 8 1.215 21.858 0.00120

Hs1bp1 96578_r_at HS1 binding protein 470 S03Gnf106.500 3 486 18.817 0.00220

Gfer 160269_at Growth factor, erv1 (S. cerevisiae)-like 2.226 S17Gnf021.275 17 2.225 23.695 0.00300

F11r 103816_at F11 receptor 172 D1Mit113 1 173 20.841 0.00467

Hars 92580_at Histidyl tRNA synthetase 2.335 D18Mit94 18 2.336 27.513 0.00600

Fgf3d 92957_at Fibroblast growth factor 3 1.132 D7Mit259 7 1.131 18.869 0.01200

aMarker most strongly associated with variation in transcript expression. bCalculation of strength of the linkage association. cSignificance of linkage, calculated using permutation test. dThese
transcripts are preferentially or differentially expressed in Lin� Sca-1+ c-kit+ Rholow cells2. A complete list of all cis-regulated stem cell genes is given in Supplementary Table 2 online.

Figure 1 Mapping QTLs that modulate gene expression in HSCs. The

variation in transcript levels across 30 BXD HSC samples was correlated

with the presence of B6 or D2 alleles at 779 loci throughout the genome.

Each dot in the figure represents a single transcript. The physical position

of each transcript is indicated on the y axis, and the position of the locus

that is most strongly associated with variation of the corresponding transcript

levels is shown on the x axis. Transcripts on the diagonal are cis-regulated

(i.e., modulated by a QTL in close proximity to the gene; Table 1 and

Supplementary Table 2 online). To represent the data graphically, the entire

mouse genome was aligned, resulting in a total genome size of B2,600 Mb.

Actual chromosomal positions are indicated at the top and highlighted by

alternating red and blue coloring. Large circles represent transcripts with

significant genome-wide linkage statistics (P o 0.05).
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below). This genetic linkage analysis resulted in the assignment of
genetic loci and intervals that are most strongly linked to the variation
in gene expression of each individual transcript. As the physical
position of almost all transcripts is known, we were able to produce
a two-dimensional scatter plot in which, for each transcript, the
x axis indicates the position of the best controlling locus (QTL) and
the y axis identifies the physical chromosomal position of the
corresponding gene (Fig. 1). Two patterns became immediately
apparent. First, 478 transcripts were associated by a QTL mapping
within 20 Mb of the gene itself. We refer to these as cis-acting
QTLs. Typically, the likelihood ratio statistic (LRS) value, indicating
the strength of association of the controlling locus with expression
levels, was high for these cis-acting QTLs. Association statistics for
162 of the 478 cis-acting transcripts (34%) passed thresholds for
significant genome-wide linkage. If we assume a total mouse genome
size of 2,600 Mb and evaluate 12,422 transcripts, the null expectations
are that at least 5% of 12,422 tested probe sets should meet or
exceed the statistical criterion across the entire genome and that of
these 621 false positives, B0.8% or only 5 spurious QTLs would fall
within 20 Mb of the parent gene. Most of these cis-regulated genes

contain polymorphisms in regulatory elements that affect expression
levels in B6 and D2 stem cells. A small subset of the oligonucleotides
on the U74Av2 array (B0,3%) have a sequence that overlaps with one
or more of the B1.2 million SNPs that distinguish B6 and D2 (ref. 17,
original SNP data from Celera Genomics). Most of these SNP-bearing
probes do not map as cis-acting QTLs. Several hematopoietic genes are
polymorphic and differentially expressed in B6 and D2 HSCs, includ-
ing Gpi1 (ref. 18), H2-D1 and Fli1 (ref. 19). These transcripts were

Table 2 HSC transcripts showing strongest evidence of trans regulation

Gene Probe set Name

Transcript

chromosome

Transcript

position

(Mb)

QTL

markera
QTL

chromosome

Marker

position

(Mb) LRSb
Genome-wide

P valuec

AI594671 96499_at EST AI594671 11 1.563 D7Mit301 7 1.078 58.284 0.00000

G22p1 103036_at Thyroid autoantigen, 70kD 15 2.162 D15Mit71 15 2.077 50.193 0.00000

AA415817 94312_at KIAA0251 3 469 D16Mit88 16 2.115 44.269 0.00000

Fmod 161373_r_at Fibromodulin 1 134 X.057.845 X 2.500 24.914 0.00000

1810037I17Rik 161955_f_at Reverse transcriptase Unknown D3Mit347 3 501 49.477 0.00001

Ceacam2 101907_s_at CEA-rel cell adhesion molecule 2 7 1.014 D6Mit149 6 952 32.253 0.00001

Asb3 161466_r_at Ankyrin repeat and SOCS box-containing 11 1553 D11Mit19 11 1.548 42.345 0.00001

Proc 161656_r_at Protein C 18 2.330 DXMit25 X 2.507 27.568 0.00001

Mela 97282_at Melanoma antigen, 80 kDa 8 1.257 D9Mit263 9 1.340 41.358 0.00003

Psmb5-ps 101741_at Proteasome subunit 11 1.587 D14Mit140 14 1.923 40.412 0.00004

1110015E22Rikd 104217_at Hypothetical protein MGC4171 7 1.113 X.057.845 X 2.500 28.138 0.00006

AA638002 96755_at EST AA638002 18 2.333 DXMit25 X 2.507 23.065 0.00007

Mbd3 101385_at Methyl-CpG binding domain protein 3 10 1.471 D4Mit111 4 593 28.739 0.00012

Psmd9 97929_r_at Proteasome 26S subunit, non-ATPase, 9 5 814 DXNds3 X 2.539 27.111 0.00015

Cnot7 161123_i_at CCR4-NOT transcription complex 8 1.173 S02Gnf118.650 2 319 30.133 0.00020

AA673511 95612_at CS box-containing WD protein (WSB-2) 5 808 S18Gnf008.065 18 2.308 24.017 0.00029

Pmm2 101949_at Phosphomannomutase 2 16 2.110 D19Mit19 19 2.429 23.993 0.00041

Lmna 98060_at Lamin A 3 468 DXMit223 X 2.597 31.761 0.00041

2600013G09Rik 102117_at RAB, member of RAS oncogene family 15 2.154 D15Mit239 15 2.075 27.364 0.00044

C81072 96489_at EST C81072 3 455 D9Mit91 9 1.301 25.902 0.00048

Traf6 98874_at Tnf receptor-associated factor 6 2 300 D4Mit17 4 601 23.029 0.00055

Trim21 92942_at Tripartite motif protein 21 6 909 Mod2 7 1.076 29.514 0.00065

Hsp60 93277_at Heat shock protein, 60 kDa/chaperonin 1 55 D2Msw142 2 339 25.609 0.00075

aMarker most strongly associated with variation in transcript expression. bCalculation of strength of the linkage association. cSignificance of linkage, calculated using permutation test. dThis
transcript is preferentially or differentially expressed in Lin� Sca-1+ c-kit+ Rholow cells2. A complete list of all trans-regulated stem cell genes is given in Supplementary Table 3 online.
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Figure 2 Comparison of brain and HSC QTLs. For each transcript on the

Affymetrix array, the locations of modifying QTL in brain and HSCs were

compared. Brain data were taken from ref. 17. Transcripts positioned on the
diagonal are controlled by the same QTL in both tissues (i.e., are stable) but

are not necessarily cis-acting (all transcripts significantly modulated by

stable QTLs are listed in Supplementary Tables 4 and 5 online).

Chromosomal positions are indicated at the top and highlighted by

alternating red and blue coloring. Large circles represent transcripts that are

cis-regulated in HSCs.
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strongly cis-regulated. Thus, our genetical genomics approach imme-
diately identified large numbers of genes carrying allelic polymorph-
isms. The strongest cis-acting genes, some of which have a critical role
in HSC function, are listed in Table 1. A complete list of all
162 significant cis-regulated HSC transcripts is provided in Supple-
mentary Table 2 online.

Notably, we identified multiple QTLs that modulate expression
levels of a large number of transcripts mapping throughout the
genome. These controlling loci, which we refer to as trans-acting
QTLs, are identified as vertical bands (Fig. 1). Horizontal bands result
from local variation in gene density and incomplete representation of
transcripts on the array. Although, in general, linkage statistics for cis-
regulated transcripts were higher than those for trans-regulated
transcripts, some trans-regulated genes showed essentially mendelian
inheritance patterns (Table 2). Among the strongest trans-regulated
transcripts, six were regulated by loci on the X chromosome. We
detected 136 transcripts that were significantly linked (genome-
wide linkage P o 0.005) to a single marker. Genomic distribu-
tion of all significant trans-acting QTLs is listed in Supplementary
Table 3 online.

Comparing brain and stem cell QTLs
An advantage of the RI panel is that mice can be repeatedly
phenotyped, and gene expression levels in distinct tissues can be
compared easily in silico. From parallel studies17, we have detailed
information on gene expression levels in forebrain of the same panel
of RI mice, enabling us to assess whether genes were regulated by the
same QTLs in HSCs and brain (Fig. 2). We found that 297 genes were
associated with the same regulatory QTL (within 20 Mb) in both
HSCs and brain. Of these genes, only 75 were cis-regulated in HSCs
(Supplementary Table 4 online). Therefore, 222 trans-regulated
transcripts were stable (i.e., their QTL location was identical in both
HSC and in brain; Supplementary Table 5 online).

Using WebQTL to detect gene networks
The concept of genetical genomics, though intuitively straightforward,
has been tested only twice in a mammalian system20,21. Therefore, very
little is known of the molecular nature of cis-acting and, even more so,
trans-acting QTLs. In yeast, trans-acting QTLs do not map specifically
to transcription factors but rather are broadly dispersed across distinct
classes of genes. But the extensive coverage of the yeast genome and its
lower molecular complexity allowed researchers to conclude that
clustered genes with known and similar function very often mapped
to the same QTL16.

Similarly, we propose that collections of coregulated transcripts,
identified by vertical trans-acting bands (Fig. 1), consist largely of
downstream targets of polymorphic genes. To substantiate this pro-
posal and to document the ability of our approach to identify target
genes, we selected four strongly cis-regulated transcripts with known
function and searched for coregulated genes using WebQTL’s correla-
tion search (Fig. 3). Runx1, a transcription factor that has an essential
role in normal blood cell development, was highly cis-regulated. By
searching for transcripts that had similar strain distribution patterns as
Runx1, we identified Tcrb and Csf1r, which are well-known down-
stream targets of this transcription factor (Table 3). We also found
that several other receptors, most notably those binding activin A and
ephrin B3, varied with Runx1 levels. Similarly, we identified Mapk1,
Ccnd3 and Rac1 as putative downstream targets of Il3ra. We found
Bmp8a, Efnb3, Pbx1 and Mapk6 to be downstream of Fgf3, and we
identified multiple well-known proto-oncogenes as new putative
targets of Fli1 (Table 3).

Identification of Scp2 candidate genes
Using a similar approach, we searched for candidate genes involved in
variation in HSC turnover. We recently mapped this trait to a 10-cM
region on chromosome 11 between markers D11Mit279 and
D11Mit41 (ref. 9). Here, we first identified all transcripts on the
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Figure 3 Linkage analysis of four strongly cis-regulated stem cell transcripts showing genome-wide significant linkage to an interval mapping in close
proximity to the gene (gene position is indicated by red triangle). The two dotted lines in each graph indicate suggestive (lower) and significant (upper)

genome-wide linkage. The yellow seismogram reflects SNP density across each chromosome. SNP analysis comparing B6 and D2 alleles detected the

presence of multiple polymorphisms in each gene (Table 3).
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Affymetrix array that mapped to the critical interval and then used the
variation in gene expression levels across the 30 BXD strains to assess
which of these transcripts was cis-regulated. Acknowledging that we
have evaluated expression data for only B25% of all genes in the
mouse genome, we identified eight cis-acting genes that map to the
critical interval (Fig. 4). Three of these are also cis-regulated in brain,
one is trans-regulated in brain, and the other four are HSC-specific.
Notably, we had previously identified three of these genes using a
subtractive hybridization approach9. The eight cis-acting candidate
genes can be divided in two clusters. The first cluster contains three
very strong cis-regulated transcripts (Kif1c, Psmb6 and 6330403K07Rik,
an unknown Riken gene); the second cluster (Lig3, Ccl9, Ggnbp2, Mpo
and Dlc2) maps B14 Mb telomeric. Haplotype analysis22 showed that
the entire Scp2 interval is polymorphic between B6 and D2 (Fig. 4).
We searched for mutations in transcribed sequences for these eight

genes by comparing B6 and D2 genomes in silico by exploiting public
and Celera databases. Polymorphisms were abundant in all eight
genes. We sequenced 6330403K07Rik and Mpo B6 and D2 alleles
and confirmed sequence variations in both the coding and promoter
sequences (Supplementary Table 6 online).

The phenotype of interest (HSC turnover) is complex in itself and
can be caused by mutations in a wide variety of genes or even clusters
of genes. This renders our model system substantially more complex
than the yeast model previously described16. Their study showed,
however, that highly coregulated and trans-regulated transcripts can
uncover the function of the underlying QTL gene. Therefore, we
assessed which transcripts were highly correlated with each of the eight
cis-acting candidates (Table 4). Although these transcripts themselves
may be located anywhere in the genome, their expression levels are
significantly associated by QTLs in the Scp2 interval (P o 0.05).

Table 3 Identification of putative targets of four cis-regulated HSC transcripts

Cis-regulated

Trans-regulated

Affymetrix ID Description Interaction status

Runx1 (92399_at; chromosome 16; 2 3¢ UTR SNPs, 74 intronic SNPs) 103617_at Decay accelerating factor 1 Unknown

93208_at TCR-beta chain PMID 11564801

98317_at Paired mesoderm homeobox 2b Unknown

162175_at Defender against cell death 1 Unknown

95808_g_at CSF1-r PMID 10891464

99323_at IL12-R Unknown

100448_at Activin A receptor Unknown

98726_at Progesteron receptor Unknown

93469_at Eph receptor B3 Unknown

161713_f_at Prostaglandin F receptor Unknown

Il3ra (92955_at; chromosome 14; 1 silent mutation, 18 intronic SNPs) 160834_at CDK4-binding protein PMID 7862452

101650_at Protocadherin 6 Unknown

93252_at Map kinase 1 PMID 10362354

101122_at Eph receptor A6 Unknown

104568_at Mixed lineage leukemia Unknown

160545_at Cyclin D3 PMID 8415743

103001_at Vegf-b PMID 11157721

103038_at Guanylate cyclase activator Unknown

101555_at Rac1 PMID 12384416

161456_f_at GATA1 PMID 8265595

Fgf3 (92957_at; chromosome 7; 4 intronic SNPs) 100707_at Plenty of SH3 domains PMID 9811447

92982_at Bmp8a PMID 11493538

102829_s_at Map kinase kinase 6 PMID 11802165

101657_at Bmp8b PMID 11493538

103075_at POU domain TF Unknown

94160_at Ephrin B3 PMID 10611251

98407_at Ephrin B1 PMID 10611251

102257_at Pbx/knotted homeobox PMID 12431378

Fli1 (94698_at; chromosome 9; 2 silent mutations, 249 intronic SNPs) 92951_at Hox D11 Unknown

160687_r_at Activator of S-phase Unknown

102265_at Myf6 Unknown

102873_at AbcB3 Unknown

103530_at Fanconi anemia Compl. G Unknown

93231_at Hic1 Unknown

98500_at IL-1 receptor like 1 Unknown

95296_r_at Flt3 Unknown

96941_at Ras oncogene family-like 4 Unknown

98731_at Ras-related GTP binding Unknown

WebQTL was used to identify coregulated and trans-regulated targets of four cis-regulated polymorphic transcripts: Runx1, Il3ra, Fgf3 and Fli1. The interaction status refers to
whether or not data are available in PubMed that support potential interaction (identified by PubMed identification number, PMID). If no hit was retrieved in PubMed, interaction
status was considered unknown.
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LR
S

1191101009080706050403020100

Position (Mb)

Dlc2

Mpo

Ggnbp2

Ccl9

Lig3

6330403K07Rik

Psmb6

Kif1c

Max LRS 18.9. Cis-acting in brain (P < 0.001)

Max LRS 17.2. No QTL in brain

Max LRS 33.3. Cis-acting in brain (P < 0.01)

Max LRS 30.2. No QTL in brain

Max LRS 17.0. No QTL in brain

Max LRS 53.2. Trans-acting in brain

Max LRS 47.8. Cis-acting in brain (P < 0.00005)

Max LRS 47.0. No QTL in brain

Microtubule motor activity
Mm.246436, 161960_f_at

Mm.4668, 100414_s_at (GenBank #AY494708, AY500847)

Mm.25583, 96513_at

Mm.2271, 104388_at

Mm.277136, 96220_at

Mm.27768, 95559_at (GenBank #AY494707)
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Figure 4 Candidate genes affecting HSC proliferation. Eight cis-acting transcripts were identified that physically map to the Scp2 locus, which was identified

previously9. Graphs for each of these eight transcripts show linkage statistics on chromosome 11. The two dotted lines in each graph indicate suggestive

(lower) and significant (upper) genome-wide linkage. The yellow seismogram reflects SNP density across chromosome 11 comparing B6 and D2 alleles. The

physical position of the gene encoding each transcript is indicated by the triangle below each x axis. Peak LRS scores, and additional information on these

genes, are shown next to each linkage graph.
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Because the eight primary transcripts in each
of the two cis-acting clusters are highly linked,
we are not formally able to assign each
specific trans-regulated transcript exclusively
to an individual cis-acting candidate. Func-
tional annotation showed clustering of tran-
scripts with overlapping or interacting
function. For example, Dlc2, which is asso-
ciated with microtubule motor activity, was
highly correlated with Myog, Mdfi and Myl4.
In addition, this transcript was correlated
with two seemingly unrelated seven-trans-
membrane receptors. Also, differences in
Mpo expression were correlated with Txnip,
which, like Mpo, is involved in oxidative
stress. 6330403K07Rik, which shows homol-
ogy with a rat Ced-4-like apoptosis protein, is
associated with several extracellular matrix
molecules (Pcsk4, Sparc and Col4a2).

We cannot exclude the possibility that,
as we have suggested before9, a combination
of the genes that we identified act in concert
to confer the cell cyclus trait. We provide
a preliminary list of candidate genes that
is subject to more rigorous biological con-
firmation. It is notable, however, that we
found several transcripts that interact directly
with the DNA replication and repair machin-
ery. These genes include a cis-regulated ligase
Lig3; two trans-regulated helicases, Cetn1 and
Dhx40; the ribonuclease Dnase1l2; the poly-
merase Pold4; and Tep1, a telomerase-asso-
ciated protein (Table 4). Mutation analysis
detected the presence of a single base-pair
frameshift insertion in the coding sequence of
the B6 allele of Lig3 (Supplementary Table 6
online). The established role in the aging
process of enzymes involved in DNA repair23

and our observation that stem cell turnover and organismal aging are
genetically linked6 provide a conceptual framework that could inte-
grate our findings.

DISCUSSION
Together with recent reports using similar approaches14–16,20, our
results document the power of genetical genomics to dissect complex
traits. Molecular networks associated with phenotypic differences
immediately become accessible as collections of coregulated genes
controlled by a single locus, and key candidate genes within such a
locus can be identified by their physical position. The HSC data set,
the brain data set and the BXD genotypes were collectively deposited
in a database, accessible through WebQTL. This analysis engine allows
custom searches to identify new gene expression pathways and is
valuable to the research community. Coregulated stem cell genes can
easily be retrieved. Also included in WebQTL are phenotypes of
previously published BXD traits, which now can be correlated in silico
with the HSC and brain expression patterns. Forty-six additional BXD
strains were recently added to this RI family24. Adding data from these
mice will further improve the power and precision of QTLs in this
cross between two sequenced strains. Additional cell type– and tissue-
specific cis- or trans-regulation patterns can easily be incorporated in
the WebQTL database. The advent of DNA chips that contain much

larger samples of transcripts, and related efforts in the field of
proteomics21, will make this approach even more comprehensive
and powerful. We expect that this approach will also be relevant for
the identification of human complex and quantitative traits.

METHODS
Stem cell purification. We purchased BXD RI mice from the Jackson

Laboratory and housed them in clean conventional conditions in the Central

Animal Facility of the University of Groningen, the Netherlands. We used

female mice between 3 and 6 months of age. We flushed bone marrow cells

from the femurs and tibias of three mice and pooled them. After standard

erythrocyte lysis, we stained nucleated cells with a panel of biotinylated lineage-

specific antibodies (Mouse Lineage Panel, containing antibodies to CD3e,

-CD45R/B220, CD11b (Mac-1), TER119 (Ly-76) and Gr-1 (Ly-6G);

Pharmingen), fluorescein isothiocyanate–conjugated antibody to Sca-1 and

allophycocyanin-conjugated antibody to c-kit (Pharmingen). We washed

cells twice and incubated them for 30 min with streptavidin-phycoerythrin

(Pharmingen). After two washes, we resuspended cells in phosphate-buffered

saline with 0.2% bovine serum albumin and purified them using a MoFlo

flowcytometer. We defined the lineage-depleted bone marrow cell population

as the 5% of cells showing the least phycoerythrin-fluorescence intensity.

Stem cell yield across all BXD samples varied from 16,000 to 118,000 Lin�

Sca-1+ c-kit+ cells. We tested a small aliquot of each sample of purified cells

functionally for stem cell activity by directly depositing single cells in a

cobblestone area forming cell assay using the automated cell deposition unit

Table 4 Trans-modulated transcripts controlled by QTLs in the Scp2 interval

Cis transcript

Linked trans

transcript P value Function

Kif1c Hspcb 3.25 � 10�7 Heat shock protein

AV046379 3.25 � 10�7 Unknown

Atp7b 5.18 � 10�5 Cu-transport

Nkx2-6 7.38 � 10�5 Homeobox containing transcription factor

Psmb6 Fmo1 9.83 � 10�8 Flavocontaining monooxygenase

Cetn1 2.31 � 10�5 Helicase activity, chromosome partitioning

Hspc150 2.40 � 10�4 Heat shock protein

Lamb 3.30 � 10�4 Extracellular matrix

6330403K07Rik Lif 1.29 � 10�5 Leukemia inhibitory factor, cytokine

Pcsk4 5.46 � 10�5 Serine protease

Sparc 1.50 � 10�4 Extracellular matrix, osteonectin

Col4a2 2.23 � 10�5 Extracellular matrix, procollagen

4733401H14Rik 8.70 � 10�5 Deoxyribonuclease 1-like 2

Lig3 Tep1 2.89 � 10�5 Telomerase associated protein-1

Akr1c13 3.99 � 10�5 Aldo-keto reductase family member 13

Ccl9 Sftpc 2.06 � 10�5 Surfactant protein

Mpo Pold4 1.09 � 10�5 DNA polymerase

Rga 1.35 � 10�5 Rag1 gene activated

Fusip1 3.65 � 10�5 Mitosis

Txnip 6.25 � 10�5 Thioredoxin interacting, oxidative stress

Psmd3 6.25 � 10�5 Proteasome subunit

Ctsg 6.36 � 10�5 Proteolysis

Pbx1 8.56 � 10�5 Pre B cell leukemia transcription factor

Dlc2 Fpr-rs2 5.97 � 10�7 Seven-transmembrane receptor

Sema5b 6.14 � 10�6 Seven-transmembrane receptor

Myog 7.76 � 10�6 HLH transcription factor

Sca2 1.01 � 10�5 Protein binding

Kpn 1.40 � 10�5 Protein transport

Dhx40 2.40 � 10�5 Helicase

Mdfi 4.36 � 10�5 Inhibition of myoD

Myl4 5.18 � 10�5 Cell division and partitioning

WebQTL was used to identify transcripts that are highly correlated to one or more of the cis candidates on chromosome
11. Colors indicate genes with overlapping or interacting function (red, protein trafficking/degradation; blue, cell
cycling; green, extracellular matrix; orange, DNA repair; black, other).

NATURE GENETICS VOLUME 37 [ NUMBER 3 [ MARCH 2005 231

ART I C LES
©

20
05

 N
at

u
re

 P
u

b
lis

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

at
u

re
.c

o
m

/n
at

u
re

g
en

et
ic

s



(Supplementary Table 1 online). We immediately collected the remainder of

the cells in RNA lysis buffer. All animal experiments were approved by the

Groningen University Animal Care Committee.

Cobblestone area forming cell assays. We carried out the cobblestone area

forming cell assay as described5. We seeded cells of the stromal cell line FBMD-

1 in 96-well plates (Costar) in Dulbecco’s modified Eagle medium containing

L-glutamine (GIBCO-BRL, Life Technologies), 5% horse serum, 15% fetal

bovine serum (sera from GIBCO-BRL), 10�4 mol l�1 b-mercaptoethanol,

10�5 mol l�1 hydrocortisone (Sigma), 80 U ml�1 penicillin, 80 mg ml�1 strepto-

mycin (both from GIBCO-BRL) and 25 mmol l�1 NaHCO3. We incubated

plates at 33 1C in 5% CO2 and used them 10–14 d later. We seeded sorted HSCs

onto these preestablished stromal layers as single cells (one cell per well). At this

time, we switched the medium from 5% horse serum and 15% fetal bovine

serum to 20% horse serum. We evaluated all wells weekly for 5 weeks for the

presence or absence of cobblestone areas, defined as colonies of at least five

small nonrefractile cells growing beneath the stromal layer.

RNA isolation and labeling. We isolated total RNA derived from pooled

HSC samples from three mice using StrataPrep Total RNA Microprep kit

(Stratagene) as described by the manufacturer. We dissolved RNA pellets

in 500 ml of absolute ethanol and sent them on dry ice by courier to GNF.

We quantified total RNA using RiboGreen, split it into two equal aliquots

of B10 ng, representing RNA from B10,000 cells, and labeled it using three

rounds of RNA amplification, exactly as described previously25. We used

two microarrays per strain (three mice � two arrays). We fractionated

labeled cRNA and hybridized it to the U74Av2 microarray from Affymetrix

in accordance with the manufacturer’s protocol. We scanned arrays and

analyzed images as previously described using MAS 5.0 software. To

generate .TXT files, we analyzed .CEL files using MAS 5.0 with the global

value of each array scaled to 200 units.

Data acquisition and normalization used for WebQTL: probe (cell) level data

from the .CEL file. The .CEL values produced by MAS 5.0 are the 75%

quantiles from a set of 36 pixel values per cell (the pixel with the twelfth highest

value represents the whole cell). Step 1: We added an offset of 1.0 to the .CEL

expression values for each cell to ensure that all values could be logged without

generating negative values. Step 2: We took the log2 of each cell. Step 3: We

computed the Z score for each cell. Step 4: We multiplied each Z score by 2.

Step 5: We added 8 to the value of each Z score. The consequence of this simple

set of transformations is to produce a set of Z scores with a mean of 8, a

variance of 4 and a standard deviation of 2. The advantage of this modified

Z score is that a twofold difference in expression level corresponds to a

difference of approximately one unit. Step 6: We computed the arithmetic

mean of the values for the set of microarrays for each of the individual strains.

Probe set data from the .TXT file. We generated the .TXT files using MAS 5.0.

We applied the same steps described above to these values. Every microarray

data set therefore has a mean expression of 8 with a standard deviation of 2. A

one-unit difference represents a roughly twofold difference in expression level.

Expression levels below 5 are usually close to background noise levels.

Mapping. We carried out linkage mapping for 12,422 transcript expression

traits using strain averages of probe set expression levels obtained using RMA

or MAS 5.0. We carried out QTL mapping using a custom program, QTL

Reaper, that does simple regression implemented in Python and C. Permuta-

tion tests (up to 106 permutations) established empirical P values. Significant

and suggestive linkage refer to the conventional criteria for QTL mapping26

(1,000 permutations with P values of 0.05 and 0.63).

There are several hematopoietic databases available in WebQTL. Our data

presented here are based on the GNF Hematopoietic U74Av2 Cells September

2003 database. Genome scans for all traits can be replicated and recomputed

using a variety of transforms and analytic methods in WebQTL.

URLs. WebQTL is available at http://www.webqtl.org/. The GNF SNP database

is available at http://www.gnf.org/SNP/.

GenBank accession numbers. D2 6330403K07Rik allele, AY494707; D2 Mpo

allele, AY494708 and AY500847.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS
We thank G. Mesander and H. Moes for flow cytometry support and O. Sibon
and R. van Os for critically reading the manuscript. This work was supported by
grants from the Royal Netherlands Academy of Sciences, a Genomics Fellowship
from the Netherlands Organization for Scientific Research, the Dutch Cancer
Society and the National Heart, Lung, and Blood Institute (to G.d.H.) and by
the National Institute of Mental Health, National Institute on Drug Abuse, the
National Institute on Alcohol Abuse and Alcoholism and the National Science
Foundation (to R.W.W.).

COMPETING INTERESTS STATEMENT
The authors declare that they have no competing financial interests.

Received 24 September; accepted 29 November 2004

Published online at http://www.nature.com/naturegenetics/

1. Potten, C.S. & Loeffler, M. Stem cells: attributes, cycles, spirals, pitfalls and
uncertainties. Lessons for and from the crypt. Development 110, 1001–1020
(1990).

2. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604
(2002).

3. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C. & Melton, D.A.
‘‘Stemness’’: transcriptional profiling of embryonic and adult stem cells. Science
298, 597–600 (2002).

4. Fortunel, N.O. et al. Comment on ‘‘ ‘Stemness’: transcriptional profiling of embryonic
and adult stem cells’’ and ‘‘a stem cell molecular signature’’. Science 302, 393
(2003).

5. de Haan, G. & Van Zant, G. Intrinsic and extrinsic control of hemopoietic stem cell
numbers: mapping of a stem cell gene. J. Exp. Med. 186, 529–536 (1997).

6. De Haan, G. & Van Zant, G. Genetic analysis of hemopoietic cell cycling in mice
suggests its involvement in organismal life span. FASEB J. 13, 707–713 (1999).

7. Muller-Sieburg, C.E., Cho, R.H., Sieburg, H.B., Kupriyanov, S. & Riblet, R. Genetic
control of hematopoietic stem cell frequency in mice is mostly cell autonomous. Blood
95, 2446–2448 (2000).

8. Kamminga, L.M. et al. Autonomous behavior of hematopoietic stem cells.
Exp. Hematol. 28, 1451–1459 (2000).

9. De Haan, G. et al. A genetic and genomic analysis identifies a cluster of genes
associated with hematopoietic cell turnover. Blood 100, 2056–2062 (2002).

10. Boultwood, J., Lewis, S. & Wainscoat, J.S. The 5q-syndrome. Blood 84, 3253–3260
(1994).

11. Lai, F. et al. Transcript map and comparative analysis of the 1.5-Mb commonly deleted
segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics
71, 235–245 (2001).

12. Jansen, R.C. & Nap, J. Genetical genomics: the added value from segregation.
Trends Genet. 17, 388–391 (2001).

13. Jansen, R.C. Studying complex biological systems using multifactorial perturbation.
Nat. Rev. Genet. 4, 145–151 (2003).

14. Wayne, M.L. & McIntyre, L.M. Combining mapping and arraying: An approach
to candidate gene identification. Proc. Natl. Acad. Sci. USA 99, 14903–14906
(2002).

15. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional
regulation in budding yeast. Science 296, 752–755 (2002).

16. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the
role of transcription factors. Nat. Genet. 35, 57–64 (2003).

17. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and
pleiotropic networks that modulate nervous system function. Nat. Genet. advance
online publication, 13 February 2005 (doi:10.1038/ng1518).

18. Pearce, S.R., Morgan, M.J., Ball, S., Peters, J. & Faik, P. Sequence characterization
of alleles Gpi1-Sa and Gpi1-Sb at the glucose phosphate isomerase structural
locus. Mamm. Genome 6, 537–539 (1995).

19. Ben-David, Y., Giddens, E.B. & Bernstein, A. Identification and mapping of a common
proviral integration site Fli-1 in erythroleukemia cells induced by Friend murine
leukemia virus. Proc. Natl. Acad. Sci. USA 87, 1332–1336 (1990).

20. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man.
Nature 422, 297–302 (2003).

21. Klose, J. et al. Genetic analysis of the mouse brain proteome. Nat. Genet. 30,
385–393 (2002).

22. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defines
haplotype patterns in mouse. Proc. Natl. Acad. Sci. USA 100, 3380–3385 (2003).

23. Hasty, P., Campisi, J., Hoeijmakers, J., van Steeg, H. & Vijg, J. Aging and genome
maintenance: lessons from the mouse? Science 299, 1355–1359 (2003).

24. Peirce, J.L., Lu, L., Gu, J., Silver, L.M. & Williams, R.W. A new set of BXD recombinant
inbred lines from advanced intercross populations in mice. BMC Genet. 5, 7 (2004).

25. Scherer, A. et al. Optimized protocol for linear RNA amplification and application to
gene expression profiling of human renal biopsies. Biotechniques 34, 546–550, 552–
554, 556 (2003).

26. Lander, E.S. & Kruglyak, L. Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results. Nat. Genet. 11, 241–247 (1995).

232 VOLUME 37 [ NUMBER 3 [ MARCH 2005 NATURE GENETICS

ART I C LES
©

20
05

 N
at

u
re

 P
u

b
lis

h
in

g
 G

ro
u

p
  

h
tt

p
:/

/w
w

w
.n

at
u

re
.c

o
m

/n
at

u
re

g
en

et
ic

s


	Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
	Introduction
	Results
	Transcript QTLs in HSCs
	Comparing brain and stem cell QTLs
	Using WebQTL to detect gene networks
	Identification of Scp2 candidate genes

	Discussion
	Methods
	Stem cell purification.
	Cobblestone area forming cell assays.
	RNA isolation and labeling.
	Data acquisition and normalization used for WebQTL: probe (cell) level data from the .CEL file.
	Probe set data from the .TXT file.
	Mapping.
	URLs.
	GenBank accession numbers.

	Acknowledgements
	References


