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Abstract

Open data science and algorithm development competitions offer a unique avenue for rapid
discovery of better computational strategies. We highlight three examples in computational
biology and bioinformatics research in which the use of competitions has yielded significant
performance gains over established algorithms. These include algorithms for antibody clus-
tering, imputing gene expression data, and querying the Connectivity Map (CMap). Perfor-
mance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The
solutions produced through these competitions are then examined with respect to their utility
and the prospects for implementation in the field. We present the decision process and com-
petition design considerations that lead to these successful outcomes as a model for
researchers who want to use competitions and non-domain crowds as collaborators to fur-
ther their research.

Introduction

Researchers increasingly rely on crowdsourcing to address particular problems through the
collective efforts of large communities of individuals. A wide variety of crowdsourcing mecha-
nisms are used in practice, such as citizen science, gamification of scientific problems, and
gear to labor-intense tasks (such as large-scale data annotation problems [1] or folding protein
structures [2]). Open innovation competitions, a different crowdsourcing mechanism, is less
understood but has become increasingly popular in computational biology research.

This mechanism opens a competition to a large crowd of people who must solve a given
problem for prizes. The main difference between open innovation competitions and other
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crowdsourcing mechanisms is that in a contest, extreme-value solutions (best submissions) are
rewarded and conventional approaches, even if very effective, may not win. Given this incen-
tive to be creative and diversify submissions, researchers typically deploy open innovation
competitions to benchmark their solutions to a particular computational problem or general-
ize existing methodologies to unsolved instances of the problem.

Past examples of open innovation competitions have been very successful in solving a wide
range of biology problems [3-5] but, for the most part, they were intended for participants
from “inside the field.” That is to say, researchers with a direct connection to the scientific
problem at hand. An exception is a contest [6] in which a computationally complex problem
(local alignment of DNA sequences) was translated into generic computer-science terms, strip-
ping the problem description of all the jargon, and then posted on a commercial crowdsourc-
ing platform (Topcoder). This challenged the members of that community (mostly computer
scientists with little or no biology background) to improve upon the state-of-the-art solution
for cash rewards. The community responded with numerous submissions fourteen of which
achieved significant improvements over the benchmark solution, a tool widely used by the aca-
demic community (MegaBLAST). Another example is Meet-U [7], an educational initiative
that challenged teams of non-life science students to solve hard computational biology prob-
lems. Despite this very successful case, the potential of leveraging communities of “non-
experts” through open innovation competitions remains unclear, although there have been
promising examples in other domains [8, 9].

In this study, we focus on trying to understand how to engage a crowd of “non-life science
experts” through open innovation competitions. Knowledge of the mechanisms that drive par-
ticipation of an external crowd may enable a broader use of contests in biology. For example, it
could enable scientists to use crowdsourcing even when the community of experts is small or
nonexistent or when it lacks the necessary knowledge to solve the problem, such as in rapidly
evolving or emerging fields that depend heavily on large amounts of data and computational
resources but are deficient in experts in scientific computing, data science, or machine
learning.

The design of open innovation competitions for a non-expert audience, however, can be
challenging. Because people from another field are not directly connected to the problem at
hand, it can be difficult to motivate this audience to participate in the contest. Rather than the
prospect of advancing research in the field or achieving a scientific publication, researchers
have to incentivize participation through other means. Mechanisms for participation include
opportunities to win cash prizes, although other incentives (the chance to learn new insights,
signal skills to prospective employers, or the enjoyment of the competition itself) may be effec-
tive as well. The presence of heterogeneous (monetary and non-monetary) incentives pro-
motes a wide and varied participation in these challenges, which could make open innovation
competitions more cost-effective than other traditional solutions, such as direct hiring. On this
topic, Lakhani et al. [6] offers a rich discussion on the costs and benefits of open innovation
competitions relative to direct hiring.

Additionally, because non-experts need a constant guidance to progress in their work,
researchers must articulate the problem in clear and easily-digestible language. They also must
construct metrics to evaluate solutions that provide live feedback to participants. The need to
evaluate and provide automatic feedback to contestants can be viewed as a limitation to the
types of problems that open innovation competitions can address. Providing automatic feed-
back to the contestants requires an agreed-upon metric of how good a solution is, something
which is often not available in many computational biology problems.

Despite these difficulties, we show evidence that open innovation competitions of this
nature can be very effective in addressing biology problems. These competitions allow
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members of the public to contribute meaningfully to academic fields by providing incentives
and easy access to problems and data that are otherwise inaccessible to them. We describe the
design and outcomes of three contests in computational biology and bioinformatics which had
solutions significantly improved. These contests sought to improve algorithms for:

« clustering antibody sequences (hereinafter “Antibody”);
« imputing gene expression measurements (hereinafter “Gene inference”);
o performing fast queries on the Connectivity Map dataset (hereinafter “Query speedup”).

The improvements achieved by these competitions focused on both optimization (reduc-
tion in speed or memory footprint), production of better models (higher accuracy in statistical
inference), and highlighted the versatility of crowdsourcing as an effective tool for researchers.

Results

The competitions discussed here were hosted on the platform Topcoder.com (Wipro, Benga-
luru, India), providing access to a community of approximately one million software engineers
and data scientists. They were held for a duration of two to four weeks, and they were struc-
tured so that each competitor could make multiple submissions and receive continuous feed-
back on the performance of their solution (based on objective metrics) through a live public
leaderboard. The purpose of such feedback was essential to drive competition among the par-
ticipants. Incentives consisted of cash prizes, ranging from $8,500 to $20,000. Table 1 reports
specific payouts and contest duration.

We evaluated each submission using predetermined performance metrics. These are real-
valued functions of one or more characteristics, such as computation time, memory use, or
accuracy, which targeted specific contest objectives. A detailed description of the metrics used
for each challenge is available in the Supporting Information (S1, S2 and S3 Appendices).

The evaluation was based on three kinds of data sets: a training set, a validation set, and a
test set. The training set and associated ground truth were provided to participants for the pur-
pose of understanding the properties of the data and for developing or training their solutions.
The validation data set (excluding ground truth) was used to provide real-time feedback on
the performance of their solution via submission of either source code or predictions produced
by their algorithms. The test set was reserved for the end of the competition and was used for
final evaluation of submissions; this data set was withheld from participants at all times. Note
that for data science competitions, the holdout test set is particularly important for determin-
ing the true performance of solutions, since continuous feedback of performance in the form
of a real-time leaderboard raises the prospect of model overfitting on the validation set. All
data sets and the source code of most of the submissions are publicly available on the internet
(S1, S2 and S3 Datasets).

Table 1. Competition payouts and duration.

Contest Duration (days) Prize Pool ($1000) (Distribution)
Antibody Clustering 10 8.5 (5/2/1/0.5)

Gene Inference 21 20 (10/5/2.5/1.5/1)

Query Speedup 21 20 (9/5/3/2/1)

Prize pools were distributed to the top-placing solutions, rank-ordered by performance based on objective evaluation
metrics. For these contests, we used a constant prize pool over duration ratio (Prize Pool/Duration ~ 1000 USD/
day) and the prize distributions follow: P(N) ~ P(1)e” >NV for places N=1,2,...and P(1) = Prize Pool/2.

https://doi.org/10.1371/journal.pone.0222165.t001
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Fig 1. Submissions per participant. Empirical CDF of submissions per participant for the Antibody (left panel), Gene inference (middle panel), and
Query speedup (right panel) competitions. Each panel also reports the empirical CDF of the submissions per participant based on the aggregated data

for the three competitions (dashed curve).

https://doi.org/10.1371/journal.pone.0222165.g001

We measured the degree of coders’ engagement and participation by looking at the number
of code submissions that they made during the contest. Remarkably, the Gene Inference com-
petition attracted more than twice the participants (85) than the other two competitions, Anti-
body (34) and Query Speedup (33). It also had a twice as high median number of submissions
per participant (Fig 1). Because all three challenges offered about the same payout per day
(Table 1) and were executed under similar external circumstances (same platform), other fac-
tors must explain the gap. One possible explanation relates to the different nature of the
computational problems these competitions aimed to solve. According to this explanation, the
community members may be more eager to solve prediction problems (Gene inference) than
speedup problems (Antibody and Query speedup).

Antibody clustering challenge (Scripps)

Motivation and objective. In the process of immunotherapy and vaccine development,
next-generation sequencing of antibody repertoires allows researchers to profile the large
pools of antibodies that comprise the immune memory formed following pathogen exposure
or immunization. During the formation of immune memory, antibodies mature in an iterative
process of clonal expansion, accumulation of somatic mutations, and selection of mutations
that improve binding affinity. Thus, the memory response to a given pathogen or vaccine con-
sists of “lineages” of antibodies which can trace each of their origins to a single precursor anti-
body sequence. Detailed study of such lineages can provide insight to the development of
protective antibodies and the efficacy of vaccination strategies. After the initial alignment and
assembly of reads, the antibody sequences can be clustered based on their similarity to the
known gene segments encoding heavy or light antibody chains. Clustering these antibody
sequences allows researchers to understand the lineage structure of all antibodies produced in
individual B cells [10-12].

The number of antibody sequences from a single sample can easily reach to the millions;
posing a major computational challenge for clustering at such a large scale. The bottleneck
lies at computing a pairwise distance matrix and subsequently performing hierarchical cluster-
ing of the sequences. The former task scales as O(N?) in both computational and space com-
plexity, where N is the total number of input sequences. The latter task, assuming a typical
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agglomerative hierarchical clustering algorithm, has a computational complexity that scales as
O(N?log N). By comparison, the file I/O is expected to scale as O(N).

Benchmarks and methodologies prior to the competition. A Python implementation of
the clustering algorithm was developed utilizing numpy, fastcluster, and scipy.cluster.hierar-
chy.fcluster modules. This Python implementation is publicly available on Github (S1 Data-
set). The clustering was performed using the average linkage criterion with a maximum
threshold distance imposed. The implementation utilized the Python built-in multi-processing
module to parallelize the computations on multiple cores and required approximately 54.4
core-hours and 80GB of memory (computations were performed on a 32 core machine with
250GB RAM) for a dataset containing 100K input antibody sequences. Empirically, the pri-
mary bottlenecks for this implementation and dataset were computation time and storage of
the distance matrix (note that the embarrassingly parallel nature of this task implies a trivial
cost conversion between single and multi-core computations). Full-hierarchical clustering
scales comparably in terms of computational complexity; with the threshold imposed, the rela-
tive cost is approximately a factor of 50 less than the cost of constructing the distance matrix,
however. Although I/O was included in the timing estimates, its contribution in this case was
negligible.

Extrapolating the computation to a typical antibody profiling sample containing one mil-
lion input sequences, the required computational time and storage is expected to reach around
5440 core-hours and 8TB, respectively. Given its poor scalability and efficiency limitations,
this implementation is inadequate for large-scale profiling, which for a small clinical vaccine
evaluation may consist of dozens of subjects with several longitudinal samples per subject. The
goal of the challenge was to optimize and improve the algorithm and its implementation, so
that routine data analysis of a large-scale antibody profiling study would become feasible given
modest computational resources.

Problem abstraction and available data sets. A common optimization practice is to
convert all or just the computationally-intensive parts of Python codes to languages such as
C/C++. We implemented a C++ version of our algorithm (directly translated) and used it in
our post-challenge benchmarking analysis (S1 Appendix). Although the memory footprint
for this implementation was comparable to that of the Python implementation, it yielded
approximately an order of magnitude reduction in computation time. This computational cost
reduction was primarily attributed to the construction of the distance matrix, whereas the
computational cost of the clustering itself was comparable in both implementations (this is not
surprising, given the underlying implementation of the scipy.cluster.hierarchy.fcluster is writ-
ten in C). All contest submissions were evaluated relative to the Python (A1) and C++ (A2)
benchmarks described above, and the code for both benchmark implementations was pro-
vided to the contestants.

We generated datasets of 1K, 5K, 10K and 100K input sequences sampled from true
sequences derived from a healthy adult subject and computed their corresponding clustering
outputs using the Al baseline. These data sets are publicly available on Github (S1 Dataset).
The output results served as the “gold standards” for evaluating the accuracy of the solutions
produced in the competition (S1 Appendix). The training datasets comprised one 1K and
one 100K input sequences, the validation datasets comprised two 5K and three 10K input
sequences, whereas the testing datasets comprised four 10K and six 100K input sequences. For
the given threshold distance, the maximum cluster size for each dataset ranged from 1.6% to
4% of the total number of antibody sequences in the set. The most probable cluster size for
each set was unity, however.

Competition outcome. The competition lasted for 10 days and involved 34 active partici-
pants with an average of 7 submissions per participant. All contest submissions were evaluated
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Fig 2. Antibody challenge outcomes. (A): Evaluation metric used for Antibody Clustering as a function of time (# measured in units of t, = 100ms) and
accuracy (ACC), as determined during the competition. Solutions lying on the isocurves are considered equivalent in quality, as defined by the
evaluation metric. Data points correspond to average performance based on up to four 10K test sets (failed test cases excluded). Also shown is the
benchmark algorithm implemented in Python (A1) and C++ (A2); note that benchmark algorithms A1 and A2 have perfect accuracy (ACC equal to
unity). (B): Effective computational cost (excluding I/O) on a single core as a function of test set size N for Antibody Clustering (t measured in units of
to = 100ms). Dashed lines indicate linear and quadratic scaling behaviors. Results are shown for the benchmark algorithms (A1 and A2) and the top
four performing solutions (top solution indicated by solid line and darker data points). The benchmark algorithms exhibit quadratic scaling behavior
with test set size, whereas the top algorithm exhibits better than quadratic scaling behavior within the regime considered. The best performance over the
entire range of N can be achieved using an ensemble of solutions selected based upon whether the test set size is either below or above the crossover
value at approximately N ~ O(10%).

https://doi.org/10.1371/journal.pone.0222165.g002

on a 32 core server with 64GB memory, although the top four solutions utilized only a single
core. For the given dataset, a majority of participants had submitted solutions that were signifi-
cantly more computationally efficient than the A2 benchmark, with the winning solutions
being orders of magnitude more efficient.

Fig 2 illustrates the computational cost performance of the Al and A2 benchmarks, along
with the performance envelope for the top four performing solutions as a function of the num-
ber of input antibody sequences for N up to 1M input sequences. As shown in the figure, all
solutions exceeded the 99% accuracy threshold to be considered for prizes (S1 Appendix) with
little or no difference in accuracy among the top solutions. In terms of speed improvement,
the winning solution was able to perform clustering of 100K sequences in approximately 1.8s
on a single core implying a total computational cost reduction (speed-up) of 108,800 when
compared to the Al benchmark. Interestingly, the primary bottleneck for this implementation
was no longer clustering but rather file I/O. Neglecting file I/O, which accounted for 85% of
the computation time, the effective speedup achieved for clustering over the A1 benchmark
was approximately 777,000 for 100K sequences. Further improvement of the winning algo-
rithm was achieved subsequent to the competition, in part by aggressively optimizing the file
I/O. The improvements resulted in another 30-fold reduction in the total computational cost
of the algorithm (including I/O) on the 100K dataset. For N up to 1M input sequences, the
four solutions required less than approximately 17GB memory, with the winning solution
requiring only 0.7GB memory.
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The winning solution achieved significant improvements in computational efficiency by
abandoning generic implementations of hierarchical clustering, which demand computing the
full (or half) the distance matrix as input in favor of a problem-specific strategy. The solution
exploited several important properties of the data set to dramatically reduce the number of
Levenshtein distances computed by noting that:

1. Some families of antibodies are never clustered together implying a partitioning of the
dataset.

2. Some antibodies are always clustered together, forming subclusters.
3. Coarse “superclusters” can be quickly identified and formed from such subclusters.

Once coarse clusters were formed, a final exact clustering was performed for each of the super-
clusters. In addition to these innovations, the solution exploited SIMD instructions to speed
up the calculation, improved the management of memory, and simplified the parsing of input
data to minimize I/O operations.

The Connectivity Map Inference Challenge (Broad Institute)

Motivation and objective. The discovery of functional relationships among small mole-
cules, genes, and diseases is a key challenge in biology with numerous therapeutic applications.
The Connectivity Map (CMap) allows researchers to discover relationships between cellular
states through the analysis of a large collection of perturbational gene expression signatures
[13, 14]. These signatures arise from the systematic perturbation of human cell lines with a
wide array of perturbagens, such as small molecules, gene knockdown, and over-expression
reagents; together, they constitute a massive dataset that can be “queried” by powerful machine
learning algorithms to identify biological relationships. Researchers can then use the outcomes
of those queries to form hypotheses to guide experimentation [15].

Despite the recent advancements in high-throughput technology, developing massive gene
expression data repositories, such as the Connectivity Map, is still considerably challenging
due to the cost of doing systematic large-scale gene expression profiling experiments. These
experiments typically involve thousands of genes with complex cellular dynamics and nonlin-
ear relationships, thereby usually demanding large sample size. They also involve perturbations
that can be performed with a wide array of molecules, at different doses, and in different cellu-
lar contexts, thus producing an enormous space of experimentation.

To address these difficulties, the CMap group at the Broad Institute has developed a novel
high-throughput profiling technology, called L1000, that makes the data generation process
for The Connectivity Map cheaper and faster [14]. This new technology is based on a reduced
representation of the transcriptome that combines direct measurement of a subset of approxi-
mately 1000 genes, called landmarks, with an imputation approach to obtain the gene expres-
sion levels for the remaining (non-landmark) genes.

The resulting combination of imputed and directly-measured genes enables the L1000 plat-
form to report on approximately 12,000 genes with accuracy comparable to traditional profil-
ing technologies (e.g., RNA-Seq) but at a fraction of the cost [14]. This improvement has in a
few years enabled the Connectivity Map to grow from its initial 500 (Affymetrix) profiles to
over one million (L1000) profiles.

While L1000 is a powerful and cost-effective tool, the comparability with externally-gener-
ated gene sets remains an open issue. The practice of directly measuring only 1,000 genes (a
small fraction of the entire transcriptome) reduces the fidelity of comparisons with externally-
generated gene sets, whose overlap with the 1,000 landmarks may be minimal. Improving the
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imputation accuracy for non-landmark genes is, thus, expected to facilitate comparisons
between L1000 and external gene expression data and gene sets, leading to higher-confidence
hypotheses.

In addition, while the connectivity analysis of CMap signatures can be restricted to the
landmarks only, sometimes this restriction is unfeasible (queries containing no landmarks) or
undesirable (leading to poor outcomes, [14]). Improving the imputation accuracy is, therefore,
expected to bear additional benefits downstream, increasing the ability of CMap to detect bio-
logically-meaningful connections.

With these goals in mind (improving comparability and the downstream connectivity anal-
ysis), the “CMap Inference Challenge” solicited code submissions for imputation algorithms
more accurate than the present approach.

Problem abstraction and available data sets. The following describes the basic imputa-
tion approach currently in use by the Connectivity Map:

o Learn the structural correlations between non-landmark and landmark genes using Multiple
Linear Regression (MLR) on a reference dataset D with complete data on both landmarks
and non-landmarks;

o Perform out-of-sample predictions of the expression values of the non-landmarks in a differ-
ent target dataset T (i.e., apply the regression function as estimated from D to compute the
fitted values of the transcriptional levels for the non-landmark genes in T), using these pre-
dictions for imputation.

It has been shown that a MLR approach using L1000 data for imputation achieves consider-
able accuracy when compared to RNA-Sequencing (RNA-Seq) on the same samples [14]. Nev-
ertheless, alternative imputation approaches could yield performance improvements (e.g., by
exploiting possible non-linearities in the data or a larger training dataset).

Contest participants were tasked to explore alternative approaches using an eight-times-
larger dataset for their inferential models with the goal to predict 11,350 non-landmarks from
970 L1000 landmarks (S1 Table). Their models were then evaluated using as ground truth
RNA-Seq data profiled on the same samples (S2 Appendix).

Competition outcome. Eighty-eight competitors submitted their predictions for evalua-
tion; fifty-five (62%) achieved an average performance higher than the MLR benchmark, with
improvements as high as 50%, and with little difference between provisional and system evalu-
ations (S1 Fig), indicating no overfitting.

For the top five submissions, performance improvements were in absolute and relative
accuracy (Fig 3). The median gene-level rank correlation between the predicted values
and the ground truth was 70% higher than the benchmark. The gene-level relative accuracy
(i.e., the rank of self-correlation compared to correlations with other genes) was distributed
with a lower dispersion (an interquartile range 40-90% lower depending on the submission),
resulting in a higher recall. All the above differences were highly statistically significant
(p < 0.001), according to a pairwise paired Wilcoxon Signed Rank Test with Bonferroni
correction.

Inspection of the methods used by the top five submissions (Table 2) reveals that 4 out of 5
of the top-performing submissions converged to a K-Nearest Neighbors (KNN) regression, and
only one used a Neural Network approach. KNN regression is a non-parametric regression
approach that makes predictions for each case by aggregating the responses of its K most simi-
lar training examples. Compared to MLR, KNN regression makes weaker assumptions about
the shape of the “true” regression function thereby allowing a more flexible representation of
the relationship between landmark and non-landmark genes.
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level Spearman correlation) and relative accuracy (gene-level relative rank); curves (light gray) represent locus of points on the plane giving the same
aggregate score (curves on the right of this plot represent higher aggregate scores); (B): Boxplot showing absolute accuracy at the gene level for all the
top 5 submissions, the benchmark, and the ensemble; (C): Boxplot showing relative accuracy at the gene level for all the top 5 submissions, the
benchmark, and the ensemble; and (D): Recall (defined as proportion of genes with a relative accuracy below .95) for all the top 5 submissions, the
benchmark, and the ensemble.

https://doi.org/10.1371/journal.pone.0222165.9003

Compared to a standard KNN-based imputation model, such as [16], the winning submis-
sion presents a few innovations. First, it combines multiple predictions obtained by iteratively
applying the same regression function to different data normalization, such as scale, quantile,

rank, and ComBat batch normalization [17]. Second, within each iteration, it identifies and
combines multiple sets of K nearest neighbors using different similarity measures. These mod-
ifications present some potential advantages over a standard KNN method. One potential
advantage is to alleviate batch effects thereby controlling for a source of non-biological varia-
tion in the data. Another advantage is the identification of the training samples that are most
biologically relevant for predicting a given test sample (e.g., same tissue). The net outcome is
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Table 2. Methods of top five submissions for the Gene inference challenge.

Rank Algorithm description

1 k-nearest neighbors (average over multiple normalizations)
2 Neural network with batch normalization

3 k-nearest neighbors (average over random subsets)

5 k-nearest neighbors (average over random subsets)

5 k-nearest neighbors (average over random subsets)

Methods used for estimating gene expression values by the top-five ranked submissions in the Gene inference
challenge.

https://doi.org/10.1371/journal.pone.0222165.t002

that the winning approach achieves more than 5% improvement in absolute accuracy and
more than 2.6% improvement in the recall over the other top KNN approaches.

We further examined key differences between the winning method and the MLR bench-
mark by comparing performance on large (100,000) and small (12,000) sample size training
datasets. We found that the winning KNN approach outperforms the MLR, although the per-
formance is sensitive to the sample size. When trained on the smaller dataset, the overall per-
formance of the winning KNN approach was higher than the benchmark (10% higher absolute
accuracy) but the recall was (5%) lower.

Clustering analysis of the gene-level scores (Fig 4) suggested potential complementarities
among the top submissions. We tested this hypothesis by combining the predictions of the top
five submissions into an ensemble approach. We used the training dataset to select automati-
cally the best predicting method for each particular gene (the one with the highest combined

Neural-Net

K-NN4
K-NN1

KNN3 N5

Fraction best genes
0.15
|

8 -
S
S]

T T T sub1 sub2 sub3 sub4 sub5 MLR
0.0 05 1.0 (n=3413) (n=3519) (n=1687) (n=1422) (n=977) (n=332)

PC1

Fig 4. Gene inference challenge: Solutions clustering. (A): Plot showing results of the Principal Component Analysis (PCA) of the gene-level
combined scores of all top five submissions for the CMap Inference Challenge. While all top submissions are clustered together in the first factor of
PCA, they differ in the second factor, separating into different “clusters” the Neural Network approach (submission 2) and the other KNN based
approaches (submissions 1, 3, 4, and 5). (B): Barplot showing the proportion (and count in parenthesis) of gene predictions used to form the ensemble,
which uses the training dataset to select the best predicting algorithm from the MLR benchmark and the top 5 submissions (i.e., the algorithm achieving
the highest combined score for a particular gene) for the CMap Inference Challenge.

https://doi.org/10.1371/journal.pone.0222165.9004
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score). By doing so, we found a strong complementarity between the winning KNN and the
Neural Network approach, which were equally selected for over two-thirds of the genes (Fig
3). We then evaluated the resulting predictions on the test set, showing a 2% improved perfor-
mance over the top performing submission.

We then examined to what extent a better inference model affects the ability to recover
expected connections (as defined in [14]) using CMap data. To test this hypothesis, the win-
ning approach was used to impute non-landmark genes on a dataset of L1000 profiles from
about 46,000 samples of multiple perturbagens (S2 Appendix). We then processed these KNN-
imputed data through the standard CMap pre-processing pipeline [14] and queried the result-
ing signatures, and their MLR equivalents, with a collection of annotated pathway gene sets.
Based on the literature, each gene set was expected to connect to at least one of the perturba-
gens. We compared the distribution of the connectivity scores and corresponding ranks gener-
ated using the predictions made by the KNN approach and those made by the benchmark
MLR approach. Results show no significant difference in the distributions of these connectivity
measures (according to Kolmogorov-Smirnov test).

In conclusion, the top submission achieved substantial improvements in performance over
the MLR benchmark, thus it succeeded in achieving a better comparability of CMap inferred
data with external data. To facilitate the use of the winning submission for this purpose, the
winning code was deployed in the R package (“cmapR”) and is currently available at github.
com/cmap. At the same time, we found no evidence that the better inference would translate
into a more accurate downstream connectivity analysis (higher ability to recover the expected
connections), contrary to the initial hypothesis. However, limitations in the contest configura-
tion (scores were not directly based on connectivity) preclude a conclusive statement at the
moment, and further investigation is ongoing.

CMap Query Speedup Challenge (Broad Institute)

Motivation and objective. Researchers often use the Connectivity Map to compare spe-
cific patterns of up- and down-regulated genes for similarity to expression signatures of multi-
ple perturbagens (e.g., compounds and genetic reagents) in order to develop functional
hypotheses about cell states [14]. These hypotheses can be used to inform areas of research
ranging from elucidating gene function to identifying the protein target of a small molecule to
nominating candidate therapies for disease.

Given the high potential of this approach, many algorithms that assess transcriptional sig-
natures for similarity have been developed over the years. These algorithms are generally com-
putationally expensive, which may limit their use to relatively small-sized data. The principal
problem is that computationally efficient methods, such as cosine similarity, may be inade-
quate for interpreting gene expression data in general. Moreover, more powerful methods,
such as the Gene Set Enrichment Analysis [18], need to perform computationally-expensive
tasks, such as ranking genes in each signature by their expression levels to compare gene rank
positions individually across signatures. Given the Connectivity Map has recently expanded to
over one million profiles [14], this limitation is particularly problematic.

To address this problem, the CMap group developed a fast query-processing algorithm,
called SigQuery. This tool was implemented in MATLAB incorporating a range of optimiza-
tion techniques to speed up queries on the Connectivity Map, and was available on the online
portal CLUE.IO. Overall, the algorithm achieves a good level of performance (in a preliminary
analysis, it took about 120 minutes to process 1000 queries with gene sets of size 100 against a
signature matrix of 470,000 signatures). Even so, execution time and memory requirements
are still a potential barrier to adoption for the Connectivity Map.
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To further the development of query algorithms for CMap data, the “CMap Query Speedup
Challenge” solicited code submissions for fast implementations of the present CMap query
methodology.

Problem abstraction and available data sets. Following CMap query methodology (54
Appendix), one bottleneck lies at rank-ordering all signature values and subsequently walking
down the entire list of G genes in a signature to compute the running sum statistics over all
possible pairs of S signatures and queries. Using the quick-sort algorithm, this task has a
computational complexity of O(S x G log(G)) in the average case. To save time, however,
results can be stored on disk, as in the current implementation, with adjustments to try to min-
imize the cost of access to disk memory. The other very burdensome task involves computing
the running sums for all genes in each signature, which has a computational complexity upper
bound that scales as O(S x G) per query.

For this contest, participants had to address these problems and the performance of their
methods was evaluated on 1000 queries to be run on the whole CMap signature matrix, which
has expression values for > 470k signatures and > 10k genes (S3 Appendix).

Competition outcome. The competition resulted in 33 participants making 168 code sub-
missions. All final submissions were evaluated on the holdout query dataset on a server with
16 cores. Results showed significant speed improvements over the benchmark: the median
speedup was of 23x with at least two submissions achieving speedups beyond 60x.

Comparison of performance between 16-core and single-core evaluations showed that mul-
tithreading alone accounted for a large fraction of the gains in performance over the bench-
mark (Fig 5): the median speedup difference between single and multi core was 18x,
accounting for 70% of the final median speedup over the benchmark.

Beyond multithreading, analysis of the scaling properties of the winning submission
showed a computational time complexity that scales as the square-root of the number of
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Fig 5. Query Speedup Challenge outcomes. (A): Scatter plot showing the relationship between speedups computed on the participants’ last submission
with one single core (x-axis) and those with multiple cores (y-axis); observations lying on the 45 degrees line correspond to participants who did not use
multi-threading in their final submission (with small variation around the line due to differences in the set of queries used to compute the speedups);
(B): Plot showing differences in the scaling behavior between the benchmark and the top submission (on a log-log scale); for both, the displayed
computation times are a median of 10 replicates.

https://doi.org/10.1371/journal.pone.0222165.9g005
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queries (Fig 5), which represents a major improvement compared to the benchmark’s linear
scaling.

The winning submission also showed substantial performance improvements in the read-
ing time—the time to load in memory the absolute values and rank-ordered positions of genes
in the CMap signature matrix: the overall reading time of the winning submission was just
below 10 seconds, which represents a 50x speedup compared to the 500 seconds used by the
benchmark (S2 Fig).

Close examination of the codes of the top submission revealed multiple optimization
adjustments that can account for all these improvements. These adjustments often overlap
with those of the other submissions, thus making hard any clear-cut categorization. Conse-
quently, we report instead the areas of optimization that we believe are responsible for most of
the performance improvement over the benchmark (beyond multithreading and the recourse
to low-level programming languages, such as C++, instead of MATLAB). Essentially, these are:

1. Efficient data storage techniques in order to maximize the available cache memory for each
thread.

2. Streaming SIMD Extensions (SSE) technology to execute multiple identical operations
simultaneously for each thread.

One of the ways by which the winning submission achieved its exceptional performance
was by loading the entire signature matrix in the cache memory. Cache memory is indeed the
fastest memory in the computer, albeit of very limited capacity. To minimize memory usage,
the winning contestant stored the CMap signature matrix at a lower precision than the bench-
mark (32-bit single precision floating for the scores and 16-bit integers for the ranks), with
essentially no loss in accuracy. Precision reduction alone, however, was insufficient to fit level
1 cache memory (the fastest cache memory available) due to the large extent of queries and
gene sets to be processed per signature. So, it developed a clever system of matrices to effi-
ciently store the indexes and partial sums for each gene in a query. The resulting algorithm
made a much more efficient use of memory compared to the benchmark.

The other major improvement is related to SSE, which is a set of instructions that allows the
processor to compute the same operation on multiple data points simultaneously [19]. The
winning submission used SSE to form batches of 4 genes and simultaneously compute the
rank positions of these genes, thus reducing by approximately a factor of one-fourth the time
of each query.

The winning code submission for the CMap Query Speedup Challenge was deployed in the
online portal CLUE.io and is now currently available as an option to users in the Query App
(S3 Fig). This improved algorithm has also enabled CLUE to support batch queries, allowing
users to execute multiple queries in a single job, all via the CLUE user interface.

Discussion

This work demonstrates how researchers in computational biology and bioinformatics have
utilized open innovation competitions to make inroads on a variety of computational road-
blocks in their work. While participants in these competitions may not possess the domain
knowledge to solve every research problem faced by scientists, their unique skills can be lever-
aged to attack well-defined tasks (e.g., algorithm improvement to maximize computational
speed) resolving specific issues or bottlenecks to the research process.

We highlight a few key advantages over traditional approaches. First, competitions enable
rapid yet broad exploration of the solution space of the problem. This broad exploration opens
the possibility of discovering high-performing solutions, which may lead to breakthroughs in
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the field. Second, competitions give researchers access to multiple complementary solutions.
Thus, they create opportunities to boost performance even further with ensemble techniques
whereby different approaches are combined based upon their strengths in different regimes or
for different subsets of data.

Our results indicate that these gains arise from the efforts of out-of-the-field participants
instead of the community of practitioners and domain experts. Thus, on the one hand, we
know open innovation competitions are a great tool to solicit community-based effort (e.g.,
Dream Challenges); on the other, we show that the potential for their use in biology and other
life sciences goes beyond the size and availability of the community of researchers connected
to the problem.

By defining appropriate objective functions to guide the competitors’ efforts, researchers
have indeed the flexibility to pursue vastly different problems or even decide to tackle multiple
aspects of the same problem concurrently via a composite objective function. This kind of
problem definition, however, can be difficult. It requires knowledge of the aspects that are crit-
ical to the problem and for which improvements are quantifiable and achievable, understand-
ing of ways to trade-off improvements in one dimension for another, and the ability to
abstract the original problem from its domain to attract broad participation (knowing that
domain-specific information hurts participation but also offers competitors insights on how to
solve the problem).

We have shown some of the challenges encountered in addressing these issues for two very
general types of computational problems: “code development” and “machine learning.”

Code development problems typically boil down to improving existing computational
algorithms that have well-defined inputs and outputs under a variety of constraints (e.g.,
speeding up the computation, without exceeding memory limits). Here, although performance
improvements are quantifiable and can be checked by test cases, other relevant aspects (e.g.,
robustness) are less so. This restriction forces researchers to take additional steps after the con-
test to validate methodologies and integrity of solutions beyond the limited test cases consid-
ered during the competition. These steps typically include ensuring security (understanding
what the code does and ensuring it is not malicious) and legality of the produced codes (that
they are original or properly licensed) before integration and deployment.

Machine learning problems focus on more exploratory questions, such as producing pre-
dictive models that describe an existing data set, yet are generalizable to new data. These prob-
lems are typically multi-dimensional, given the wide range of potential applications, and are
sometimes hard to quantify (e.g., measurements that offer only a partial picture of biological
states to model). As a result, competitions addressing these problems typically involve inter-
pretation and further evaluation of methodologies, exploration of possible complementarities,
and understanding strengths and pitfalls of solutions in comparison to known methodologies
along dimensions not considered within the competition.

Our study suggests that although competitions offer the flexibility to address both kinds of
problems, the associated post-competition efforts can be quite different. In both cases, han-
dling these additional tasks requires expertise that itself may not be available to the end-user,
although they may be addressed in part by subsequent competitions; thus, keeping a modular
design strategy appears beneficial. For ML problems, further efforts (comparable to those
devoted to replicating the methods used in another study) are often needed to evaluate and
assimilate the new knowledge produced. Further research to examine the outer limits of scien-
tific problem solving through contests is necessary.

We conclude by mentioning a few additional empirical contexts in which open innovation
competitions seem promising. One is the assignment of functional attributes of small mole-
cules and genes, such as predicting the mechanism of action of a compound. While many
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algorithms have been independently developed for this purpose, a broad exploration is often
out of reach to individual laboratories. On the development side, research in biology is often
impeded by bottlenecks in the memory storage and transmission of genetic data, which are
critical and quantifiable, thus an open innovation competition seems an effective way to over-
come these bottlenecks.

Supporting information

S1 Appendix. Competition evaluation for antibody challenge.
(PDF)

$2 Appendix. Competition evaluation for Gene inference challenge.
(PDF)

$3 Appendix. Competition evaluation for Query Speedup Challenge.
(PDF)

S4 Appendix. CMap query methodology.
(PDF)

S1 Dataset. Data access for antibody challenge.
(PDF)

$2 Dataset. Data access for Gene inference challenge.
(PDF)

S3 Dataset. Data access for Query Speedup Challenge.
(PDF)

S1 Table. Data sets for Gene inference challenge. This table summarizes the training, valida-
tion and test data sets used for training and evaluation in this challenge.
(PDF)

S1 Fig. Overfitting. Plot showing the empirical distribution functions for the provisional and
final scores computed on all the final submissions for CMap Inference Challenge. The two dis-
tribution curves overlap quite well indicating no overfitting.

(TIF)

S2 Fig. Read time. Read time as a function of number of queries on a log-log scale; dots plot
median time out of 10 replicates for each dataset for CMap Query Speedup Challenge.
(TIF)

S3 Fig. Implementation screenshot. Screenshot of the implementation of the winning code

submission for the CMap Query Speedup Challenge in the online portal CLUE.io, where the

code is currently available as an option to users in the Query App (“compute with sig_fastqu-
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