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Calculate	score:	
1. Number	of	correct	

predictions/	total	
number	of	disease	
connections	

2. Find	the average	

Background

• Networks	are	a	type	of	data	structure	can	be	
applied	to	many	domains	to	demonstrate	
relationships	between	entities

• Our	study:	Gene	– Disease	association	network		

• Genes	and	diseases	each	as	nodes	in	the	graph

• Edge	is	represented	with	GDAs	(Gene-disease	
associations)	

• Indicates	a	causal	relationship	where	mutations	
or	alterations	in	a	gene	are	known	to	cause	a	
disease

Task

• Link	Prediction		

• Predict	new edges

between	entities in a graph

• Graph	Machine	Learning

• SOTA	Methods	à GCNs(Graph	Convolutional	
Networks)

• Our	focus	:	Large	Language	Model	Utilization

• Prompt	an LLM to predict disease-gene
associations given information about the already	
existing	links	in	Graph G

Prompt Engineering  

Data

Methodology
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• DisGeNet
• Databased	used	to	explore	gene-disease	
relationships,	which	can	help	researchers	
understand

• Disease	mechanisms

• Potential	drug	targets	

• Biomarkers	for	diagnostics	

• Aggregates	data	from	Scientific	Literature,		
Clinical	Databases,	Genetic	Studies	and	Gene-
Disease	Databases

Results/Discussion 

Future Steps

Here is extra info about the gene:	{info}.	Given	a	subset	
of	the	DisGeNET graph	G	with	nodes	as	geneNames or	
diseaseNames and	edges	connecting	gene-disease	pairs	
(g,d),	predict	the	top-10	diseases	associated	with	
{gene_name}	by	predicting	new	edges	not	in	G. Only	
select	diseases	that	are	in	G.	Output	exactly	10	diseases	
in	a	comma-separated	list	and	nothing	else.	Do	not	
include	any	additional	text	or	explanations.	Here	is	G:	

{pairs_str}

Second	Iteration:	Extra	gene info perprompt extracted	from	NCBI

References

Third	Iteration:	Chain	of	Thought	Prompting	Technique

Reasoning	Process:	
Step	1:	Identify	the	known	diseases	associated	with	{gene_name}	in	the	
graph	G.	
Step	2:	Identify	other	genes	in	the	graph	G	that	are	associated	with	these	
diseases
Step	3:	Analyze	the	connectivity	pattern	of	these	related	genes	and	diseases	
to	infer	potential	new	associations	for	{gene_name}.	
Step	4:	Rank	the	potential	new	diseases	based	on	their	connection	strength	
and	relevance	to	{gene_name
Step	5:	Select	the	top-10	diseases	from	this	ranking.	

BLEU ROGUE1 ROGUE2 ROGUEL

First	
Iteration

0.026 0.151 0.0563 0.122

Second	
Iteration

0.0466 0.183 0.0883 0.1417

Third	
Iteration	

0.058 0.204 0.108 0.1582

Gpt 4-o Mini

Gpt 4o Mini

1.	Concept	Matching	for	the	hallucinations	

2.		Improved	scoring	method	based	on	Token	
Similarity	

3.	Prompt	Engineering	– find	the	right	amount	
of	context to provide to	GPT	

4.		Fine	tune	a	smaller	model	for	better	
performance/	test	other	LLMs	(Llama,	
Gemini,	etc)

5.	Test	and	compare	with	Graph	Neural	
Network(GNN)	based	approach
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Discussion / Conclusion

• Overall,	the	pre	based	trained	GPT	may	not	
be	suited	well	for	Disease-gene	association	
tasks.	

• However,	the	performance	improved	as	we	
integrated	more	information	specific	to	the	
task	AND	a	reasoning	process	for	the	LLM.	

Common	accuracy	metrics:

Token	Similarity	Metrics(LLM	specific)
Example	of	tokens	: “Breast Cancer”	à “Breast”	+	“Cancer”

Precision Recall F1	Score Jaccard	
Index

First	
Iteration

0.263 0.049 0.083 0.043

Second	
Iteration

0.249 0.0679 0.1067 0.056

Third	
Iteration

0.324 0.0965 0.148 0.08

G with masked edges

Graph	(	G	)	

(d1, d2, …, d10)
List	of	candidate	diseases
per	gene	in	the	test	set	

Basic	Metrics	
• Node	Count:	15035
• Edge	Count:	73469
• Average	Degree:	9.7
• Density	:	0.00065
• Connected	
Components:	209

g

d1

d2

d3

d4

d5

**Thank	you	to	Teresa	Hill,	Dr.	Nicholson,	my	mentor	
Zubair	Qazi,	and	the	Su/Wu	labs	for	giving	me	this	
opportunity	and	guiding	me	throughout	my	project.	


